
LA4JR -92-562
LA-UR--92-562

DE92 008476

TITLE SIIPERC(I!IPL!T1;RII1:I!LT(;I::Gk!ORKSHO1’’91 PRocm-JIN(:s

AUTHOR(S) .J.Brown

SIJBMlrTEDT(I Sllllc’r(:(lml)iltclr ‘9
,\ll)wluc’rqll~’. Y:’
:hvtlml)t~r 14-lti.

DWCLAIMER

llrnrewrlwm~dwan~ntd worhapmodbym~dlkUnti Smtm

,,, , :, .,,, .,,.,..., ,

.,, . r. ,., ,,, ,.,
—.. — . . . .....-. — .

1!m
OL,l.l.,,,,,.,

,,1 . . .

,,, ,,, .,. ,.. * .,!, ,,. . .,, ,,, . ,,, I!.r II ., ,I!l, m,..r.!,.m,,, ,!,,,,!,,,..

,: . ,, ,, .,, ; ,,,.,,. ,, .V ,, t, I ,1. %,,.. 0!,!., 1, ,1 . .. .,,, ,. ,,.. ● ..., ,.,,,l ..,.. ,,, ! ,. ,1,..11,,, .,,,.,,., “.. ..t 11.,, s,,, Ilm,, #.t...l..l ,,1I ,s”8,,,
-. . . ----- ----- . . . .. .... . . .. . .. .. .. . . . . .,-

Iannos

. .- _______ .—

MASTER
Lus Alamos National Laboratory
Los Alamos,Ncw Mexico 87545

,i.,i,’~ml’’” , ‘ ‘ “ . ., .,,,

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



os b
D 1

. NM

~

Supercomputer Debugging Workshop ’91
Proceedings

Albuquerque, New Mexico
November M-16, 1991



FOREWORD

The Supercomputer Debugging Workshop ’91 (SD ’91) was held the week prior to
Supercmnp~ltlng ’91, and focused upon topics relat[ng to debugger construction and
usage In the Supercomputer programming environment. The workshop brought
together debugger developers and users to discuss topics and experiences of mutuai
interest, and establisheda basisfor fhturecollaborations.

The objective of the woricahopwas to promote a free and open exchange of
information between an interdisciplinary group of debugger developers and users
from the commercial and aeademie communities, thereby advancing the statc-of-
the-art of debugger technology.

Program Chair:

Jeff BrowL Lx Ahzmos National tiborntory

Local Arrangements:

DeniseDaimW Lm Alhmos National Luhomtory

Program Committee:

Bruce Kelly, NERSC
Alan Riddie, NERSC
Peter Rigsbee, Cray Research
Larry Streepy, Convex
Rich Titie, Th4nklng Machines
Ben Young, Gay Computer

Keynote Speaker:

KCIIKennedy, R&e Univemfty



Table of Contents

Addresses of Participants

Keynote Address
Debugging and the Tedlop Computer

Ken Kennedy, JZke Udvemity

Large Group Presentations:

Debugging ProductIon Codes
HaroM Trease, Los Alamos National Laboratory

The Prism Progmmmlng Environment
Rich Title, Thinking Machines Corporation

CXdb A New View On Optimization
Larxy V. Streepy, Jr., Convex Computer Corporation

Debugging at the National Security Agency: “The State of the Usc Mcwqy”
Tom Myers, National Secur@ Agency

bdb: A library appronch to writing n net- debugger
BenJamln Young, Cray Computer Co~oration

The Los Alamm Debugger ProJect
Jeffrey S. Brown, hs Afamos National Laboratwy

‘I”heAudltorlall-tlon of n Running Code
Che~l 1. Wampler,LosAhmos National bboratory

An Integrated Debngglng. Analysls, and Vlsua)lzutlon Envirommmt for l.tirgt-s~iil~
Multiprocessors

Alva L. Couch, Tujls Unive@y

Anlmatlon and History: Analyzlng Programs Over I’hnc
Kent L. Beck, MasPar Computer Cctporation

A Dlst rlbuted Debugger Archltccturc
Ann Mel Chang, SUfcon Graphics Computer Systems



Distributed Debugging:

Design of a Debugger for a Heterogeneous Distributed System
Arjun Khan- Experimental Systems M, MCC

Debugging in a Loosly Coupled Heterogeneous Computing Envlronmcnt: A Case Study
Matt Kussow, Supemoncumency Reseamh Team, Naval Ocean System Center

Designing CDS: an On-Line Debugging System for the C_NET Programming Environnwnt
Pierre Moukel~ Labonstoti de l’fflo~”que du Parallelism

User Interface to Debugging Tools and Standards:

DBL: An Interactive Debugging System
Mukkai S. Krishnamoorthy, Rensselaer Poiytcchnic Institute

X Window System Interface for CDBX
Peter A. Rlgsbee, Cray Reseam~ Inc.

DWARF: A Debugging Stundard
Janls Livingston, Mofondq Inc.

Watson: A Graphical User Interface Environment for Dcbug~cr IIcvclopmcn(
Randy Murriah, Cmy Computer C’oqwation

Debugging Optimized Code:

Debugging Optlmimd Cole Without Surprises
Max Copperman, VniveAty of Cal~ornk at Santa Cruz

The Symbolic Debugging of Code Transformed for Parallel FkcctItloII

Patricia Prather Plneo, Allegheny College

]ntmnedlate Languages for Debuggers
BenJamln B. Chaue, Department oJ Computer Science, Rice Vniwrsity



Debugging Parallel Codes:

MDB - A Parallel Debuggerfor Cedar
ItretMarsdf, Center for Supcrcomputing Research and Development, U of Ill.

A Replay mechanism within an environment for distributed programming
S. Chaumette, Unive~ite Bonieaux-I

An Integrated Approach to Replay Analysis of Message-Passing Parallel Programs
Chad Hunter, The MITRE Corpomtion

On-the-fly Detection of Data Races for Programs with Nested Fork=Join Parallelism
Robefi Hood (for John Mellor-Cmmmey), Rke University

Block-Structured Control of Parallel Tracing
Cherrl M. Pancake, Auburn Univem@

Debugger Performance and Interface at Analysis Tools:

An Object-Oriented Design of a Debugger with undo
Robefi Hood, R&e University

Debugging with Llghtwelght Instrumentation
Beqjamln Cha% Rke Univers@

Integration of Periorrnance Analysis and Debugging
Marty Itzkow!t% Silicon Graphics Computer Systems

Managing Debugger Process Execution: A Flnitc State Mwhiw Approach
Paul A. Sanvlll~ Silken Graphics Compu#er Systems

A Visual Debugger Constructed by Program Generating Tcchnlquc
Ming Zhao, CS DivLrion, Asian Institute of Technology

lnteractlvt St eerlng Using the Appllcatlon Executlvc
Brian Bllss, Centerfor Supewomputing Research and DPW1OIMIW, [t of Ill.

Summary:

“Dream Debugger”

Charlle McDonald, LMverdty of Cid@rnh at Santa C.’rII:



Attendees at the Supercomputer ’91 Debugging Workshop
November 14-16, 1991

Daniel Bates
US Government CIA
Rm. 2V29, Bldg. NliB
Washington, DC 20505
EMAIL ADDRESS:

Kent Beck (speaker)
HasPar Conputer Corp.
749 N. Mary Ave.
Sunnyvale, CA 94086
EMAIL ADDRESS: kentb@maspar.com

John Blaylock
C-10. MS B296
LANL
Los Alamos, NW 07545
EMAIL ADDRESS: jwb@lanl.gov

Brian Bliss (speaker)
Center for Supercomputing Research

and Development
University of Illinois-Urbana
104 S. Wright St.
Urbana, IL 61801
EMAIL ADDRESS: blissecsrd.uiuc.edu

Don Breazeal
Intel Supercomputer Systems

Division (SSD), MS CO1-01
15201 N.W. Green Brier Pkwy
Beaverton, OR 97006
EMAIL ADDRESS: donb@ssd.intel.com

Jeff Brown (Chairperson)
C-10, MS B296
LANL
Los Alamos, NM 87545
EMAIL ADDRESS: jxyb@lanl.gov

Karla A. Callaghan
Intel Supercomputer Systems Div.
15201 N.W. Greenbrier Pkwy, MS CO1/01
Beaverton, OR 97006
EMAIL ADDRESS: karlaeswl.intel. com

Ann ?4ei Chang (speaker)
Silicon Graphics
2011 N. Shoreline Blvd.
Mountain View, CA 94039-7311
EMAIL ADDRESS: ●nn@sgi.com

Ben Chase (speaker)
CITI, Rice University
P.0, Box 1892
Ilouston, TA 77251-1892
EMAIL ADDRESS: bbc@rice.edu

~erqe Chaumett.e (speaker)
1,a13Ri, University Bordeaux 1
351 Cours de la Ljheratlon
33405 Talence, FRANCE
FMAIL ADDRESS: chaumette@qecocuk).grr(:(l-pI (Jq.ft



Doreen Cheng
NASA Ames Research Ctr
MS/258-6
Moffett Field, Ch 94035
EMAIL ADDRESS:dcheng@nas.nasa.gov

Jim Christensen
Office H1-C16
IBM T. I. Watson Research Ctr
Pmo. Box 704
Yorktown Hta, NY 10598
EMAIL ADDRESS: jimc@watson. ibm.com

Johnny L. Collins
x-7, MS B257
LANL
Los A~amos, NM B7545
EFIAIL ADDRESS: juan@lan2.gov

Max Copperman (speaker)
Computer and Information Services
University of California - Santa Cruz
G3 Koshland Way
Santa Cruz, CA 95064
EMAIL ADDRESS: max@cis.ucsc.edu

Alva Couch (speaker)
Tufts University
Dept. of Computer Science
Medford, MA 02155
EMAIL ADDRESS: couchecs.tufts.edu

Jan Cur.j”
Dept. of Computer Science
Univ. of Washington
Seattle, WA 90195
EMAIL ADDRESS:

George Dalmas
US Government CIA
Rm. 2V29, Fldg. NHB
Washington, DC 20505
EMAIL ADDRESS:

John Delsignore
BBN Systems and !l’echnologiea
10 Moulton St.
Cambridge, M 02138
EMAIL ADDRESS: jdelnign

Ray Glenn
Supercomputing Research Ctr.
17100 Science Dr.
Bowie, MD 20715-4300
EMAIL ADDRESS: glenn@super.org

Howard Gordon
Supercomputer Research C.tr
17100 Science Dr.
Bowie, MD 20714-4300
EMAIL ADDRESS: flash@super.org



Ron eux AmeLLe

Ron Guilmette Computing
396 Ano Nuevo Ave. , #216
Sunnyvale, CA 94006
EMAIL ADDRESS:rfg@icd.tom:

Carolynn Hakansson
Verdix Corp.
1600 NW Compton Drive #357
Aloha, Oregon 97006-6905
EMAIL ADDRESS: cazolyfi@verdix.com

Ken Hansen
l“itional C!tr. for Atomspheric

Research
Boulder, CO
EMAIL ADDRESS:

Charles Raynes
Digital Equipment Corp.
305 Lytton Ave.
Palo Alto, CA 94070
EMIL ADDRESS: haynesewsl.pa.dec.com

Anthony Hefner
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
EMAIL ADDRESS: sasarhedey.sas.com

Robert Henry
Tera Computer
400 N 34th 4300
Seattle, WA 98103
EMAIL ADDRESS: rrh@tera.com

Mike Hester
Intel
5200 NW Elan Young Pkwy
C04-02
Hillsboro, OR 97124
EMAIL ADDRESS: meh6iwarp. intel.com

Sue Utter Honig (speaker)
Theory Center
737 E and TC Bldg.
Cornell University
Ithaca, NY 14853-3801
EMAIL ADDRESS: psu@coznellf .tc.cornell .edu

Robert Hood (speaker]
CITI
Rice University
P.O. BOX 1R92
Houston, TX 77251-1992
F~IL ADDRESS: hood@ricemedu

Bob Hotchkiss (speaker)
LANL
X-7, MS B257
Los Alamos, NM 87545
EMAIL ADDRESS: rsh@lanl.gov



Lm ra~o A*CO scaencarac ucr.
14G 35, 1530 Page Mill Rd.
Palo Alto, CA 94304
EMAIL ADDRESS: lohsieh@paloalto.vnet. ibm. com

Chad D. Hunter (speaker)
The MITRE Corporation
Burlington Road
Bedford, MA 01730
EMIL ADDRESS: chad@linus.mitre.org

Marty Itzkowitz (speaker)
Silicon Graphics, Inc.
2011 N. Shoreline Blvd.
Mountain View, CA 94039-1980
EMAIL ADDRESS: maztyi@wpd.sgi.com

Michael Karr
Software Options, Inc.
22 Hilliard St.
Cambridge, MA 02138
EMAILADDRESS: mike@soi.com

Bruce Kelly (CO~ittee)
National Energy Research

Supercomputer Ctr.
L-561, P.O. BOX 5509
Livermore, CA 94551
EFIAIL ADDRESS: kelly@nersc.gov

Ken Kennedy (Keynote Speaker)
Rice University
P.O. BOX 1892
Houston, TX 77251-1892
EMAIL ADDRESS: ken@rice.edu

Zahira S. Khan
Dept. of Mathematics &

Computer Science
Bloomsburg University
Bloomsburg, PA 17815
EMAIL ADDRESS:

Arjun Khanna (speaker)
Experimental Systems Lab.
Mcc
3SO0 West Balcones Ctr. Drive
Austin, TX 78759-6509
EMAIL ADDRESS: arjun@mcc.com

Rance Kirtley
AT&T Bell Labs
RM 14 B267
1 Whippany Rd.
Whippany, NJ 07981
EMAIT, ADDRESS: attbl!homxc !kirtley

Richard Klamann
C-10, MS B296
LANL
Los Alamos, NM 87545
EMIL ADDRESS: rmk@lanl.gov



Dept. of Coquter Sc ence
Rensselaer Polytec: 4.c Institute
Troy, NY 12180
EMAIL ADDRESS: moo~.,ly@turing.cs.rpi.edu

Matt Kussow (speaker)
Naval Ocean Systems Center
Code 421, Bldg. 606
San Diego, CA 92152-5000
EMAIL ADDRESS: kussow@nosc.mil

Yeon-Jae Lee
Jumin Dev. Dept
NAIS Development Division
140-716 Dacom Bldg
65-228 3-GA IIANGANGRO
Yongsan-Ku
SEOUL, KOREA
EMAIL ADDRESS:

Janis Livingston (speaker)
Motorola, Inc.
MMTG
6501 William Cannon Drive West
Austin, TX 78735-8598
EMAIL ADDRESS: janisl@oakhill.sps .mot .com

Lo!:is Lopez
IBM Scientific Center
1530 Page Mill Rd.
Palo Alto, CA 95014
EMAIL ADDRESS: lopez@paloalto.linusl. ibm.com

Jack MacDonald
t4icrotec Research
2350 Mission College Blvd.
Santa Clara, CA 95054
EMAIL ADDRESS: lopez@paloalto.linusl. ibm.com

Ruth Ann Manning
Oak Ridge National Lab.
P.O. Box 2008
MS 6397, Bldg., 6026-B
Oak Ridge, TN 37831
EMAIL ADDRESS: rm6@oInl.gov

Bret Marsolf (speaker)
University of Illinois - Urbana
305 Talbot Laboratory
104 South Wright Street
Urbana, IL 61801
EMAIL ADDRESS: marsolf@csrd.uiuc.edu

Charles McDowell
Computer and Information Sciences
Univ. of California - Santa Cruz
Santa Cruz, ZA 95064
EMAIL ADUREZS: charlie@cis.ucsc .edu

Dennis Moerl
Cray Research, Inc.
655F Lone oak Drive
Eagan, MW 55121
EMAIL ADDRESS: drm@cray,com



--..—- ------
Department O; Defense
9800 Savage Road
Fort Header 14D 20755-6000
ATTN: T3
NO ~IL ADDRESS

Pierre Houkeli (speaker)
Laboratories de 1’ Informatique

du Parallelism
ENS-Lyon
46 Allee d’ Italic
69364 Lyon Cede% 07, FRANCE
EMAIL ADDRESS: nmukeli@lip.ens-lyon.fr

Khalid A. Mughi:l
Cornell University
Dept. of Ccxnputer Scienc=
Upson Hall
Ithaca, NY 14853
EMAIIs DDRESS: khalid@cs.cornell.edu

Randy Murrish (speaker)
Cray Computer Corp.
1110 Bayfield Drive
Colorado Springs, CO 80906
EMAIL ADDRESS: mush@craycos.com

Tom Myers (speaker)
National Security Agency
9800 savage Rd., P1
Ft. 14eade, MD 20755
EMAIL ADDRESS: ctmyers@super.org

Kelly O’Hair
Supercomputer Systems Inc.
2021 Las Positas Court
Suite 101
Livermore, CA 94550
EWWL ADDRESS: uunet!ssi!ohair

Wendy Palm
Department of Defense
9800 Savage Road
Fort Mead, MD 20755-6000
NO EMAIL ADDRESS

Cherri Pancake (speaker)
Dept. of Computex Engineering
P.uburr University
Auburn, AL 36049
EMAIL ADDRESS: pancake@enq.auburn .edu

Patricia Pineo (speaker)
Dept. 01 %mputer Science
Allqheny College
Meadville, PA 16335
EMAIL ADDRESS; ppol@music .alleg.edu

Arlan Pool
Mercury Computer Systems
600 Suffolk Street
Lowell, MA 01854
FMAIL ADDRESS: uunet!mercomp!alp



Robert Rapson
US Government CIA
Rm. 2V29 Bldg. NRB
Washington, DC 20505
EMAIL ADDRESS:

James D. Keed
CONVEXComputer Corp.
3025 South Parker Rd.
suite 109
Aurora, CO 80014
E14A13 ADDRESS: jdreed@convex.comp

Alan Riddle (Conmittee)
NERSC, LLNL
P.O. BOX 5509, L560
Livezmre, CA 94550
EMAIL ADDRESS: riddle@winddune.nersc.govn

Peter Rigsbee (conwnittee)
Cray Research, Inc.
655F Lone Oak Dr.
Eagan, MN 55121
EMAIL ADDRESS: par@cray.com

Paul A. Sanville (speaker)
Silicon Graphics, Inc.
2011 N. Shoreline Blvd.
Mountain View, CA 94039
E?lAIL ADDRESS: sawilLe@upd.sgi .com

sslie Scarborough
“.3MPalo Alto Science Ctr.
..530 Page Mill Rsad
l?alo Alto, CA 94304
EMIL ADDRESS: toomey@paloalto. ibm.com

Tony Sloane
Colorado University
1300 30th St., tB2-31
Boulder, CO 00303
EMAIL ADDRESS: tony@cs.colorado.edu

William Spangenberg
LANL
x-7, MS B257
Los Alamos, NM t37545
EMIL ADDRESS: whs!?lanl.gov

Jeff Spencer
US Government CIA
Rm. 2V29, Bldg. NHB
Washington, DC 20505
EMAIL ADDRESS:

Karen Spohrer (speakmrl
Motorola, Inc.
~T~
6501 William Cannon Dr. West
Austin, TX 78735-f1598
EMA:L ADDRESS: karens@oakhi li.sps.w: ,c?F.



DEC
K6 Main St (MLO1-31B11)
Maynard, HA 01754
WAIL ADDRESS: decwzl : :amugur_s@rdvax.dec.tom”:

Al Stipek
Cray Research
1440 Northland Drive
Hendota Heights, MN 55120
EMAIL ADDRESS:

Jeff Stoddard
C-10, !4S B296
LANL
LOS Alamos, NH 87544
EMAIL ADDRESS: jy8@lanl.gov

Larry Streepy (Con9nittee)
Convex Conpter Corp.
3000 Waterview Pkwy
P.o. Box 833851
Ricm!ardson, TX 75083-3851
EMALLADDRESS: streepy@convex.com

San&a Swanson
Cray Research, Inc.
655 Lone Oak Drive
Eagan, ~ 55121
EMAILADDRESS: ss@cray.com

Jim Tabor
c-10, MS B296
LANL
Los Alamos, NM B7545
EMAIL ADDRESS: jet?lanl.gov

Richard Title (Comnittee)
Thinking Machines Corp.
245 Fir9t Street
Cambridge, MA 02142-1264
E14AIL ADDRESS: title@think.com

Harold Trease (speaker)
LANL
x-7, ?45 B257
Los Alamos, NM 07545
EMAIL ADDRESS: het@lanl.gov

Wheels VanderWeele
Verdix Corp.
1600 NW Compton Drive S357
Aloha, OR 97006
EMAIL ADDRESS: wheels@verdix.com

Cheryl Wampler (speaker)
C-10, MS B296
LANL
Los Alamos, NM 87545
EHAIL ADDRESS: clwelanl.qov

Nancy Wernez
LLNIJ
P.O. BOX 608, P93 L300
Livermore, CA 94550
EMAIL ADDRESS:



Elizabeth Williams
Supercomputer Research Ctr.
17100 Science Drive
Bowie, MD 20715-4300
EMAIL ADDRESS: ew@super.org

Joe Wolf
Cray Research
500 Montezuma 4118
Santa Fe, NM 87501
EMAIL ADDRESS: jhw@zia.tray.com

Sasan Yaghmaee
Boeing Computer Services
P.O. Box 24346
Seattle, WA 98124-0346
EMAIL ADDRESS:

Ben Young (Comznittee)
Cray Computer Corp.
1110 Bayfield Dr.
Colorado Springs, CO 80906
EMAIL ADDRESS:bby@craycos .com

Bing Young
Cray Research
LLNL
P.*2. Box 808
Livermore, CA 94550
EMAIL ADDRESS: bing@craywn.com

Ming Zhao
Asian Institute of Technology
Division of Computer Science
P.O. BOX 2754
Bangkok 10501, THAILAND
EMAIL ADDRESS: zm\ait.ait .thOmunnari .oz,au



DEBUGGING AND THE TERAFLOP COMPUTER

Ken Kennedy
Center for Research on Parallel Computation

Rice University
Houoton,TexMI

AESTRA CT

Nouemkr 26, 1991

In ● very real aenae, the debugger it the inverse of a compiler, because its job in to interpret the
●xecution of the compiled program in ● language close to the programming language in which the
original program io expreaaed. The state of the art is “source-level” debugging in which the debug-
ger useB the compiler cymbol table to interpret an execution in the aourc~ language,

The quest for ● terdlop m~hine will introdure new machine designs and corrmponding compiler
complexities that will significantly complicate the job of the dchugger, The teraflop machine ig
almoat certain to b~ a highly parallel machin~ (thounand~ of proceaacm) in which each proccnsor i~
a sophisticated commodity microprorwmor. With the advent of 64-bit addreming, in microproccH-

nors, these machinen arc Iikcly to havr hardwarr shared memory, although they will Iw parka@
like diatributml-memory machines.

Th~ compilrrs for parallel machimw will introdum cnormoufi complrxiti?s for the drbuggcr Iwrnunr
they will emp]oy aophih atml tran~format ionn to mlhanrr ningleprwwmr sdwduling. pwdlrli~m

●nd mtimory hiwarrhy age, (’ompikrn arr AuI Iikrly to ●mplny intmprocrdura.1q}{imizatinnti,

ARa muh of t hmw drvdopmmt w futurr dcbumm will hr prmwntmlwith t hrcv nm jor AIIIWIW:



Delxgg W

ad ikt

Ten&p CoW#W-



4

“~. Cowtpk



- h(+) bandakik

- 19W la+e+u~

*
* 9000 pmcesscrs



FA-we RmNel PIacbwes

k------- “--,”
-i

cm

El
-n



“ sped-y : %2-3



Mukpfocesw ckxc!Ae Fhcgtvvw+

F’fmwmEL

END PAEA LLEL DO

L



● Fockati 77

- PCF F&-

9 F&an q o







Wwkges

















Cxsadvcan+ag?s

- ape+

- ●xcat+b +%t&



9 cur.e.+ S+a+uS







I



s-



Do ==\l N

Do T=l,

DO K=Il

N

N



vwu\\dk

Examples; GM+ ,





l)H?(J(XN;I ‘RolXJCTONCODES

I3Y

I [AR()[ J) TIWASIC
( ‘(N PWATION,41, PHYSICS GROUP(X--7)

IiOS--\l MK)S NA’I’K)NAT , 1,ABORFH70RY



us1!:[?

(/1
I





lIY 1)1-;1 MU N(; WORLD

‘1’1Ii:K:\YITS1KLLD 1.11;:
’11][[I(;S‘[’[[;~[’((;OLJ1,1))MAKE LIFE B~~r]!.~R
‘1’1H(GS TH:\rl’hOM ,1) MAKE:LIF’lZGREAT
?’1Hi(x ‘1’[-”m’I I)Rl”:i\M01’



“ : .N‘1‘1KA’1’loiv:
;“l ”--

. .

-.. .

k. “’Y;-:’l’l/#(.~(ul’[.J1?1’:1)l’vmsms
!:\,/qJ:)/y’l’l Ilpij(-; Is[)yNAM[(;

i. ,1.-:1
1. :h 1)1’:[KC(.:ING‘1’001.s:..--

m’!’.1.,1)!3/\P$’i!1(;1)1lx(Cwwii)
[ “:II)JN ANl) I WRVI ([lbki)



‘1’[ [l,: ~/Ay [’l’ [s

M1( ‘ROS(-’OI‘1(.;

!?[-l ‘1’]w: PRIN’1’S’I’ATII:MICNTS

w 1C% ,Imw w I)ATASmwcrurili

IWWY’I’I IHW M[!W I’YI: V()]LJNTFJIRICD



(1I 11:(;1(po[p(
Ix) [Y’’il)()
\\-l [Lyy[p’s

A

‘-!()( ‘1/(; 1”:I,1’3/)

.-i ! [KuILlh’1’

1

IIV(ia

1:1,DI.I;IIIJ(XING

1, IMACRO 1,AN(WACII:





II[AT !bvuw I,11’’”:IMPOSSI.BI;[’;T!II-MS‘‘

O U “1’0PT4’I’1(‘ (’1 llIH< I)OIIVI’IN(-;
p’.\{’l!,~r]’y



I)IHIIKGING:THEWAYH’SHOULDBE

M) I)lt13U(X3 N(;

-4lW’I.TICRC1.,ASS
OFCODEDwmo[w”

i ?I.H’[’FR TOOLS



‘[’[[I?K;S T[ IAr[’((XIJLD) MAKE LIFIZBETIl?R

IWIXXATIW P[{:lWORMAN(XANALYSIS
ml) I)I;:IXJ(XI.I:R

IWIWW1’11:1)DAM MANAGER
.\~ [) [)I;:[:3[!(;(;K:R-.





‘[’1 IIIWS ‘1’1IA’I’ I DRKAM OF

I lY\VlNC I)II:MXHI:R l)l-;:VF;[..,OF]I~:llS

WIN ,1Y U)+: ‘1’l HI{ CODI{S



The Prism ProgrammingEnvironment

Don Allen. Rich Bowker, Karen Jondcna”s, Josh Simons, Sieve Sistarc,Rich Tide

Awbrs’ Airtss:

Thinkbtg Machines Coprdon
24S FUSI St.

&ambtige, .~(lSS02142

Emd: alle~ihink.com. bowke@think.tom, &re@Mink.tom,
sim9m@lhink.tom, sisw@lhinkcom, lide@lhink.com

~ Rim programming cnvironrnm is a graphical environment 10 suppcm the
dcvelcqxnm of Co-ticm Machine Pgrarns. This pqw discussesdu design and
impkmenuuitm of Prism.

1, CkNIs ort%kul

WCW1ouI mliuk ovu ● ycsr ago m build n Connwion Mxhinc pqpamming environmem meeting
* following gmls:

8. Make ConnaXion Machine progsarnmcrsmat poducuve,

b. ~qcm all Connection Machine programming models.

c. k Ji<t ~ well.inlqraud scl of LrX)ls,

d. kaytousc,

e, Rovi& an smanive gmphiud mtcrke M would demo WCII.

f. The cnvirrmmem should suppm muhipk usrgcI&e.g.. both CM2 and CM5.

8, The work moded to be dtmc cm a fasi schalulc 10 huvc he envmmmcm ready in urnc for
W CM5 -un-menL



-2-

2. OveWew d I%hm

h LIWinitial release of Rism we focused on tie problems of debuaging, pMormance analysis, and CM
vistiizmion. Wc fell thatby doingm excellentjob in hose &-* we would provideIhe rnosL&fLL
m usus of rhe Conncctiar Mach* supereornputer. Rism ti wifh Ihe other aspem of program
Wvclopmcm by providing in-es LOiILdcIE.LLtiL LOOISsuch as cdimm, lhe “make” udlity, and online
dmlmelllalkul.

In * &sign of Rism, much cmphusis was placedon providingan easym-use, imuitive, ti arlrdve
inmfm. Rism p’ovides a pcim-ad<lick graphicalhue-, basal on OSF/Nlotif. The design and
implemenmdcmof k - intefacc is describedin section3.

Prism’sdebugging feaw’esincludeall the fcsmresof standarddebuggersswh as dbx, but UI a graphi-
cal sating. In adliaon, Risan fumkmality goes beyrnd dbx in a numter of ways. lhis will h
deScLibcdindeLailinsccLkYn4.

Data-parallelprogramming usually involves k manipulation of large arrays, so the ability m visualiz
LIE= arrays is imponamin a -- Machinedebugging cnvironmenL Section 6 cksaibes Rim’s
dua visualization cqmbilities.

Rim’s performance-aulysis kamres enable the user106nd LWLwhere and how rhe programis spend-
ing iu he. Prism goes bycmd swdard profilem such as ‘pnf and ‘gpror in a numbu of ways: (1)
Performance data is Men down ~g to WhaLConmxion ~hine or from-end resoruce is being
Use4Zand (2) Lhe reaolushm goes down 10 k source-line level. 7hc perfcmnance analysis feanues are
dcauibed in =ti 7.

AL tiis phu the reder may wsnl m refer to figure 1, which shows a screen widr some windows from
LIW Rism environmem. In the center is h main window, with tie mpkel pulldown menus, Lhe
source window, and IIM commands mea Sumounding lhal are various OPUOLISIpop-up windows: A help
window in W upper kf~ a eaupk of visualizers ifLLOthe array “u” in W lower lef~ and some prfor-
mancc hisqparrrs on W nghL



1’.
1

:

call .Wtwt
9=0
.fl .:) = [1:371
*l?J=2.~

●,J. :1 : .( J- I.:l. ?2
?-? L-.,-

,:

,.
. ....
:-:
::;
,--<
----
-..%
,..
,=
:?

Ir
l—

I:camell 1 Itu 1 ‘k ~

-M
911.:1 ~ 9(1. : ).(1:321 10.6 a
& IOJ = 2.32

.{J. :) = ●(J-t. :). (0. J2.0) ❑

m 1=7



3. User Interfaec

Prism’s user interke runs under the X Window System and is based on the Mtxif widget XL 7%e
interfacewas designed to LEeasy to lean, and onti Ieamcd, fasl and efficiem to use. These are the
two key criteria that defim the ease-f-use of any system.

Pull-down menus, buucms,and dialog boxes make most of the fu~tionality of Prism eaily and obvi-
ously available to the user. The appamnce of dialog boxes is standardised as much as possible to
hmse user fhrniliarity wih the inwface. For example, mow dialogs have apply, close, and help M-
ums. Sumdard keyboard accelemtcwscan activate k close cr help buttons in any dialog at the touch of
a key.

A comprehensive dine-help system provides nicely-formatted documentation on all aspects of using
Rism. In addition, context-sensitive help is available in all dialogs and pull-down menus, via a help
buuon in the former and a help menu option in the latter. Finrdly,inlegrat.ion of Thinking whines’
WAIS text retrieval software into Prism provides users with a powerful capability for online sairthing
of the entin Connection Mtwhine documentation se~ using relevance-feedback techniques.

Prism provides a number of shmcuts tial increase h sped of use of he interface. PuHdown menu
items may be copid to the tear-off region, where they become buttons thal perform the same ~tion.
For some users, a command line interface may be used more rapidly than a graphical one, so com-
mands can b typed in a text region that maintains a his~ of commands and Rism output. A number
of aaions that apply to program emtitis, such as printing a variable or listing a function, can be repidly
performed by intersming with the sauce region, which displays the source code for the curmnl function
or file. The user sclecIs some text in tie region rid then choosesa ppup-menu option to apply to the
selected emthy. These same OPUOIMare accessible through the main menu with more guidance given to
the user,but al a costof additionalmousegesturessndkeystrokes,
Laslly,Msm allowsinteresting and useful gmphical interactions with some of the underlying debugger
functionality. The W!Kre, File, and Function dialogs display lists of stack frames (i.e.. function invcxm-
Lions), available source Glcs, and available functions, respectively, If the user clicks on any Iisl itcm,
k SOUKCregion displays the source c.cdcfor that item, and if bc item is in the Where or Function list,
the dcfmdt scope for variable Iookups is set to the chosen function. Prism Evems (see below) muy ‘be
created and modifid using the Evctu Table dialog, whicn nllows comple~ gcncrulity in specifying
event descriptions.



-4-

4. Debugging of data=parmllcl pragrams

The data-parallellanguagesfor the Connection Machine include CM FOR’lRAN and C*. These are
extensions of * FORTRAN and C languages which povide for the manipulation of amays in parallel.
SinLe these languages still have n single conrrol flow, it is relatively straightfonvani to extend existing
debugging paradigms (such as what dbx povides) to programs tittmI in these languages, Th&efore,
we chose dbx as the base (m F%rn’s debugging features. ‘k ma of this section describes the exten-
sions we made 10 mm dbx into a &bugger for Connection -hine progrnms.

First of sII, Prism M to be taught 10 fach parallel data from the Connection Mwhine, This
mechanism is based on calling runtime routines via the “call” command mechanism. In this way, Rism
can get al parmllel CM FORllUN ts,msysor C* parallel varisbks.

Secondly, dbx’s expression pamcr was extended ro handle CM FORTRAN (FORTRAN 90) expressions
and G expressions.The results of these exprcssienscan h printrxl out in the command window or fed
to one d Risrn’s visualiscrs (see sactim 6). ‘l%is ability of the dcbuggm LOinteqm e~ssicms in our
hmguages hSSP1’Ovedvaluabk.

lltought Iwl to Lw given to how bcsl to pmvidc graphical imerkes to standarddebuggc#functiorudity.
The source window (see tigurc 1) is the backbone of Prism: II povi(ks visibility into rhc cunem sourw
psil.ion, and provides *C ability D m breakpointsand prim variables. In additional. oprkmal POPUP
windows provide h functionality of ccmmands such as “funC”, “file”’, and “where” (SCCfigure 2).
Thcsc witiws inle=l in the narursdways. For example, clicking on a function in lhc “Func” window
will rc-psition the soimcewindow to rlK start of rhm funcrion,

Another ma where dbx’s qabilities were extended is in Prism’s “event table”. The ides is to gcncnd-
izc and enhance k dbx “atop..”, “mscc...”, “when ..,”, and “display ..,” capabilities. A Prism “evem”
consists of a rngger condition, and =tions 10 bc @xrrted. Exsmples of trigger conditions: wlwwver
lhc IXOgram reiwhes a certain point (slandard breakpoints), whenever B cardition becomes true (“stop if
...“), or wlwnevcr tie value of a variable changes (“stop <v- ...”). Actions can ~ arbitrary Rism
ccurrmands,such as “prim”. For exarnplc, by seuing up an cveru thw triggers “i)rrevery Iinc, whose
actirm is m upiatc a viswslhr for rhc amay “x”, il is possibh!to wwch the may “x” change as the Po-
gnu I runs. Figure 3 shows IJWevent table,

5. MIMD”Pardkl debu@og

With the advent of k CM!J, wc can now support snmhcr progmmming mode.1on rhc (’onncction
Whine: Multiple threads of comrol with cxplicily mcssugcpussingbc[wccn ticm, This prugrsmming
model is supporud by the CM5 opcruring syslcm snd ILSCMMll mcssagqmssing Iibrury.

Prism currently suppms this pogrdnlmm~ mwicl by oll’criny an intcrlhcc m the ncw i%dhx dclmg~cr,
tism can pop up a window running Pndhx. l%ism rcmuins W.JVC and can bc used on k frrm-cnd
ponirm of the user program, while the PndtIx dchu~gcr provirlcs visihili[y snd control of whw IS going
on in h Pruccssur Nodc+.

A full description of Pndbx is oulsidc rhc SCOP of this paper, huI twicfly, the idea is m pmvldc dbx-like
debugging into any of processor mxks, Tk user cun switch his dchug~m~ contcxl amongst rhc nodes,
Cupabililim urc nlso provided for itcruling sny twnmml uross till nudes ur WILYof mrdcs(cig,, “where
all”)) I%dhx providm these cqmhihlics Wh u dh~dItbr communalmlcrl~l’.

Fur the fulurc, wc urc Ioukmg mm the following: ( I ) l%whn~ U mm gruphlcul inlcrlwc m lhr Pndbx
I’unclionulily, (2) CYmcr intqwrmon rrf PruhI and Pnwn, und (l) Investl~ulmg ullcrrum psrudI~m* Ior
MIMD ptndlcl dcbuggmg. l’hls cnurc srca N u Irultlul m’ h)r lunhcr rcscurch.



-. Flmc @’ ❑ File w

Functions Source riles

.‘l r

m I

I;alarray.lcm
complcwrray Marray.fern
finish imt.c
Iloatamay
:Iarl

Selection Sdeclion

~~ Icm’’exarraym’m I

rzmzimm IEX!Z2EIEIt—. i
Ioatarray(] line ?9 in ‘floaiarray.lcm-
MNF~} line 2 I in ‘htarray.fcm-
mai~) at Me24c

—.

~~1Cancel
B



~; rwnt 1.dDlc El

;1
Id 3 ““lntarray. F~-:14 [ Watcll~[

Actions
I

Condi[ion
~ ““D

S[op ~ ❑Instruction n ❑Silent n

!2Ecl [El p=] FI
Common Events

Debugging Prinling

===- mGziqGzq-j I!zEl
“~[ m



-5-

6. Data Wsualizatkm

Rism cumetuly provides a tightly-integrated ca~bility for the visualization of prallel and serial data,
A scparascwindow, called a visualizr, may be - for -h variable or expression to be visualixc.d.
Visualixcrs give LIE user an efficient means b navigate through and interprel the large arnoums of data
mat are IYPically found in massively paralkl pograms.

Visualiza3 me designed to view multidimensional mrays of data Any variable or expression of type
array may be viewed, whcth the dms resides on the CM, tk from end or scsnecombination thereof.
The visualti displays one section of a two-dimensional slice of dw, and the user may pan around in
this slice using simplegmphicalgesums. A ruler may b enabled which shows the coordinates of tie
array clanents ~ IIM four corners of the visualizer window. Fm higher-dimensional data, slidem am
providod for vaIYing the ccdhus of axes Lhatare onhogonal to the displayed slice. Assignments of
may axes to the sliders and b two window dimensions m shown by small text fields which can be
edited m change * displayed layout.

Data may be displayed in visualizers using cm of several pt-defined graphical repsmenustions,which
may b fmcly changed after a visualizer is crsxucd. Texmal,colcredpixel, and tmolan pixel represen-
tations = curently●wdlable.Fora tcxmslvisualizer,lheASCIIrep’esenwionof eacharmyelancm[
is pinted in k window. Though this may a Iiule differml from lhe dbx print command, the datn
navigation ca~bilities offeml by Prism make visualization using lexl vastly superiar to dumping a
potentially huge mray to a terminal.

The pixel seprescntationsdisplay one ma) elemenl ~r pixel. A boolean pixel visualizer maps elc-
mcms m black u white based on comparison IO a threshold value, while a colored pixel visualizer takes
he nange of data and discrelizes ii m hi either a default spc.cmdcolomuip or a colosmsapprovidcl by
the user. Beususe the pixel representations give an inex.w indication of the value of each may elc.
mem, Rism provides a point-and-click o~an m que~ the value of any pixel.

Figure 4 shows a Kxuud viswdizcr into a 2-dimensiosd army “a”,

The buikin visualimrs provided by Rism give tie user fast and effective mms 10 view alma, In the
fuusrc. I%sm will lx also able LOcxpori dam LOcxumud visualimion syskms such ss AVS.



I!

i&iEID’m -
w,-,.

..lzn I 28W_3C

291
292

205

2?6

297
298

-00 -50 -lYo -)00
?-~~’ < —.

I
J

2S9.3(

Mill -0

Max -499

Mea - 24!Is

~ql

Msualiza[ion Parameters

Field Wldlh

Precision

t:liniwwn

Maximum

Threshold

m

1 I
I 1
I 1
Hm



-6-

7. Performance Analysis

While dais-parallel ~s share important charrmaislics wilh lheir sequential counlerpmls, i.e.,
sequential or pseudo-parallel ccmuol flow, heir ambitious pdonnancc goals, combined with me added
compkxity of im.er-processorcommunication and large dma W, make comprehensive perfonnanu
lads an absolute naccssily.

In Prism, we have &gun to implement such a sui~ of ptiamance analysis IOOlS. Our inilia.1 wcwk
focuses on providing Conndon hkhinc users whh an understanding of where and how Uwir ~
grams m qmuling lhcir tie. Per-pmcahut and per-source-line graphiud displays arc available for
Lhe ulilizatirn of h majtx rcm.uws (e.g., pocessm nodes, imer-psocessorcommunications ncmvork,
mass+los’agedevi~s) of Connecti Machine sysums. Funhcmnore,lhesc displays are available for
-h node in a program’s dynamic call-graph. llte displays are cksignc-dso thm dm user can easily
identify he mcw heavily utilized rcsounx, and, by navigaing abotn lhe call-graph by simply pointing
ad clicking, home in a he PI- in the sowz code that arc tie major conuibumm 10 Ihal utilization.

Figure 5 shows -of Rism’s @mnance hismgmms,

We feel IIMI providing imegrwcd prdling d ● program’s use of all the resources available 10 it
representsan impmsm advance over profiling mols h provide information abmu prmessor utilization
only, 11is imporlam Ihal pcrfomance analysis tools pennil tie user 10 easily undcrwand where k kv-
erage is; this is not possible witiut an unckruanding of a prngmrn’s usage of all pmls of tie comput-
ing sys~m W can conaibutc to delay.

8. Summary

7his section summarizes how we dieved the various goals of me project:

a, The OSF/Motif ad X.wincbws based interfmc provides ease of use and an a-live
appwuance.

b. By basing Prismon existig sofiwarc such as dbx we wem able 10 get h up and running
quickly.

c, By isolating largcAeWndent L9ingsin mnlime routines (e.g., fetching acmal dam from he
Conndon Machine). we were able LOeasily rcurget Prism, In facl, he wrne Prism ex-ul.
able works fm bwh CMi”s and CM5’S.

d, By mckling probkms LIWI arc difficult on supercompuuxs (debugging, performance
analysis) we were able 10 povidc Muuly useful tml,



~E CFU (user) 26.2 %

FE CPU (Cgstm: 12.0 z

~ CPU (user) ❑ 17.1 x

m CPJ (system)

Cm-m (SencUGet)

cm (NEWS) •1 16.3 %

ICm (Reductions) 0.0 Z

C- (FIYCM)

Total I 61.7 Z

ccmplexarray U16.9 %

Floatarray 10.2 x

tlf)IN 10.0 Y

—
Resource H cpn (twer). Pracehre e~lexarr~ ❑

a’1.: ) = (0.1.0) 10.1 z

a(l.:) = a(l .:)=[1:321 I0.2 x

do 10 J = 2.32

a{J. : ) = a(J-1 .:)*(O.32.0) II 8.1 z

10 cnntinue

b(l.:) = {1.0.0.0) I0.1 x

b(l.:) = b[l.:)~[1:321 I 0.2 %

dO 20 J = 2.32

b(j.:) = b(j-1 . :)+(32.0.0.01 08.0 %

20 contlrvle

a=a+b 10.1 z

b = (2.@.f3) 10.0 z

J
Cancel

n
Ilclp



CXdb
A New View On Optimization

Larry V. Streepy, Jr.
Co-developers:

Gary Brook% Rusaeil Buyse, Mark Chiarelii,
Mike Garzionq Gil Hansen, Dave Lingie,

Steve Si~ Jeff Woods

Convex Computer Corporation
3000 Waterview Parkway

Richardmn, TX 7S4M3
etreepy@convex.com

Abs?iad

- SUitC-Of-IhC.~ in Oplirnizing Colnpibr uchnobgy hSS
incrcascd rapidly over rhe years — a pace Ihat debugger
uchnology has not ken able 10 ma~h. Convex’s ncwesl
ofh’ing in debugger uhnology, CXdb, synchronb lhc
two technologies. CXdb is a full-featured debugger Ihat
provides tie developer capabilities to debug oplimizcd
code. It provides a sophisticated user interface for effcc-
tivc communication of debugging infcmnation ands rich
command SCIenabling the user to easily work with the
application being debugged. CXdb’s understanding of
compiler optirniumions are based on an innovauves of
informationemitted by rhccompilw, LIWCcmipilcrJlcbug-
gcr Inlcrface (CD1), CXdb also derives compiler.s@e-
siz.cdvariable valuesat run-lime,

1.0 Introduction

Thispqxr describes:

. Themotivation behind CXdb’s dcvclopmcnl.

● The daw contnincd wihin ~c CDI and how it Is used
m undcrsuwd the program being debugged.

. I low IIIC Graphicul User Imcrfscc cnhanccstic USC).
um.krsumding of’l.hcprogmm Wlc.

. Fcauwcsof M command language s~ifically aimed
u handling optimti code.

~is paper closes witi comments on possible fuuue diru -
dctnsfor CXdb functicmalhy.

1.1 MWmlon
The aUte-of.Lhe-arl in optimizing compilers has kii
steadily dvancing over the past sewral years. Culrcnl
canpila!ion wchnobgy a provide aulomalic scnkir,vcc-
tcs, and pamilel optimiaions on an application [Conv901
[Conv91al [Lu911and [Sark90J. However. lhc corre-
spondingm of &bugging technology has not been kccp-
Ing pace, ~ical current-day debuggers rquirc IJWI[hc
a@icadon h compiled with optirnizations dissblcd.

Being able w debug wilh Optimizxions ennblcd hns SCV.
cd distinct advanlsgcsmThe following Iisl prcscnLssonw
of b advamagcsm

!. Applicadons typically m several times fas[cr when
optimized. The kmgcr it Inlm3 tic progmm m cxtubil
a bug, IJK Iongcr tic developer will hnvc to wuil until
the mtual LA of debugging can &gin, This
Ienglhens Ihc ovcmll lime-to-solulion, Whcll
debugging optimized code, the lcn~tl] of cuch cdi[-

1 Ot 22



lntrodwtlon

cornpilcdebug cycle !srcduc.c.din direct relationship
witi the s-ups provided by those cptimti.

2. C&lain classesof bugs may exhibit Ihemnlvcs mly
whenoptimi,zationsareapplied.Therefose,havingto
debugonly tie non~ptimi.zed code may pevent you
from ever finding h bug. Forexample,arilhmcdc
optimizal.ions may allcz Ihc ccmvergerweMavior of
an algorithm.

3. Compiler devel~ra arc also debugger users. Far the
compiler developer = ‘W abk to debugcoqiler
com~nems tit affecl optimization, the debugg~
has to be able to handle Ihe ob@c~code in i~
optimized form. Without lhis suppofi he develqw is
forced inlo the Wdioumss of working at Ihe
instruction level.

4, Pcrfonnanccdebugging, Bad performance can k
considered a “bug-just like a logic error. IIis
essential to debug the code as opfimized to dctcrminc
what additional oplimizations to make,

5. Support for production codes. Dcvelqxrs will be
able 10 work with cuslomcrs in lhe field using tie
optim izcd application. Core files submitted by
cuslomcrs can ‘W operated on dircclly.

The resull of ticse restrictions and problems is that the
developer is placed under a considerable handicap when
vying m develop, debug, and lune optimized applications.
CXdb was developed with the solution of these problems
asonc of i~ mapr design gcmls.The remaining ~tions of
his paper provide a uxrr of tic various femurcs of CXdb
nr,d dcscribc how ihcy help dcvclopcrs work with opti.
mizcd code.

1.2 ZMgtlng R.8.arch

Mosi O( the current research in dcbugga support of opti-
mizd code has bun focuwd on hiding tie effects of the
optimizatirms from lhc dcvclopcr, [HcnnB2], lWaSr85]

lZZll~31, 12clll141,[CoMdUl, and [ZuraW], lhe objective
of their rcsctwch is to prcscnl the user with expected
Muvior, Although [his cpprmwh works whh spcclflc
classesof optimizmions, it bamncs intrwtablc whcmyou
consider lh~t oplimiz~klms arc cnscadcd, merged, and
applIcd muh.iplclimes in vnriow urrlcrsm

II isrr”iclctir Ihal rdl oplimizalimrs cm lx made transpar-
CIII, To rnain[ain the ~ransparcnc y of the oplimi7ali(ms

cuct) op[inlizaiion musl bc rccvuluwcd cuch lime it is

revised or ● new optimization h added, This leads 10
-tive maimenanccin IIEdebugger to bp it in synch
with lhe Cunpila. Swh maintenance costs are unaccepl-
~c in tOdSY’S CXUCIW]Y COiI@tk -L

CXdbWSS kvdopd to ddmss CCS’llpih t@IlliMiOflS by
depicting what is achuslly happening. CXdb uses visual
feedbacktopresenttheeffects of h opt.imizmions on a
~’s behavior.

1.3 ~ of Optlmlzmlon
ManyqYtimMhs canlHapplied during the compilation
process. These oplimizations can be divided into three
major categories: scalar, vector, and parallel [Conv90]
[Conv91a]. Ilw &hrmlogy of automatic scalar and vector
optimization is well advancal. The science of automatic
parallel optimization is comparatively new. ‘fbblc 1 prc-
senls a sample of the optimization that fall within Ihcsc
categories.

?bbh 1. Optlmlzatlonsby Catagoty

Optlmtxadoa

msmrwmlSC~u@l
spen+erderu inslIUClions
gtobt regiswrdtocalion
raAei@l Auction
rdmdml-usipmenl ●lamination
essipml Iulxtilulion
amrrnonwkx~ssion eliminmkrr
ralwdenl-use elimination
umslml popegaticm md folding
elgekic end migomnnetic simplification
&dcale elimination
tmisling d sinking scdm d srmy refewrrccs
cqy propqetia
d rrmtim
Wwrglh tiuclion

smp muung
bop distribution
kmp in~henge
pkl hois[ervlsink
omrditionslindwtion verisblcs
hoopdimribuhxr

—

Pmllel itipmini~
verisbte vmor stip.mining
Eelar Ipesaing md rdmion
(plus cantineliom Wilhveclmoplimi?alims)

2 of 22 CXdb A Naw Vlaw On Opllmlzatlon



Tha Cor@ar-LhbuWW hWrba

2.0 The ComMsr-Dsbuaaer Intorhce

Oncof UK limiting facmrs in cuncru UNIX debuggers,
suchas gdb. sdb,-1 dbx, is Ihc rncchanim M Emmnils
compile-time infmrnation 10 h debugger. All of lhcac
dcb~~crs usc a STAB’ basedappoach to rc.uicvc cora-
pilcr-~uccd debugging information (cavcal: The kdb
debugger is based on a set of debugging daia, kzmwn as
DWARF, that is curreruly undergoing a standar~
effon). The fimitaticmsof STAB-a DWARF-ha -dimple
mcnmhms in suppmling optimized c~ *bugging arc
summarized as follows

●

●

●

Syntxcic gmnularity. Y%cview of the sauce cdc P
vidcd is rcs(zicud sobasic blaks and stmcmcnm This

granularity is 100coarse 10handle optimization whkh
often operate at the cxprtssion level (which encom-
passes most scalar optimlzalions). Additionally, lhc
VICW k purely kxmf; na syntactic.

Vamble value hxalion. Under optimization lk value
O( a variable may migrals between several m~hine
Iocalions (memory, rcgislcr. nowhere), There is no
mcthcxfof erwding his infomtwion witiin the STAB
mmhanisms.

hlapping sourcecode and ob@ l-lions. The STAB
mechanism only suppms a I: I ma’pping from source
Ilncs m objccl code. Optimizatiims can replicate or
fuse ObJal code scgmcnrsin w.]ys Ihsl require a many-
m.rnany (M:h? mapping of sourcecode w objecI co&.

Wllh IJICSCIwnllauons and the rquircmcms of handling
opumlzcdcode in mmd, an cnurcly new mcd’umimr was
dcvclopcd. l?Ns ncw compllcr-debugger imcrfacc (CDf) G
rcprcscrucdby a setof compdcr-c~md da& 6W

Ilc CnnVrx cnmpllcrs sre comptd of fanguagc.~ik
from-ends and a common back<nd. The fronl.endsPr-
km [hc Icxlcal and scmannc malysls of k ccnnpilaucm
pr~cu, l%c back-end Implcmcms oplimiz.mien and cuk
grncrallon Each module (froru.cnd or back-end) is
rcs~nslbk for gcncralmg a porwm 0! Ihc CDl, The from.
cnd gcncrmcddata files corrcq’md loach pnq mute
file llrc trot-end gcncratcd ctm fries comcspnd LOcuh
oh)c:I file prw!u~cd The componcnL*of M CDI uc pc.

sensedin he following sections. Table2 presents a brief
o-w or shedam W and their conscms.

TM&z cm Dat8 Fh Ovatiaw

1 m
sow- Flk Mw 1 exmuable bukd
SarhI Tti ●xalaxble bxckd

NXMC~P= as froru-md

. . .

SOW= Rqe %bk m bwk+rrd
~miabk Tabk .V1 bxck~nd

Exmexsti Txble .XD1 bxck ~nd

2.1 Frmt-or@ CanPWWM

2.1.1 NmOapaw
-h nam~ daIS file (NS) comains tic mp.level sym-
tmls &fined wilhin W source file. Usually lhcsc symbols
arc visible &m&s ~ entire program, In C, top-level synl-
bofs ccmsissof cxwnal identifiers. In Fonran, *c> consl~t
of subroutine,fumion, and canmomblwk names.

The NS contins W paniaf language n3mcspiJccconwIb.
ulcd by [he source file. The union ot’ all Ihc llisrti~l
narnespaces comprises lhc language namcspircc fur the
q$licu,ion ~i~ &bugged. In programs wriucn in mulu-
plc languages. Ihc dcl’mgger maimainr. onc langu:~gc
namcspacc for each source language. The namcspm. c$
provide a mapping from symbol rwmcs 10 souruc film
This mapping provides suppori (or dynamic Icmlmg (I1
@l’ugga data files.

2.1.2 Sarrm UnR 7abla

‘IW mmt unit Ublc (SLIT) crmum Lhccncmhn~ It)r llh.
source unit uccs rcsulling from ~hcinput sour~c filr A
scm.mcUU”ILqan ●bsr.rmcd, Iangqtc mdcpcndcm plmc (d
W ~gram. A fife’L wrcc urw+ foml a ucc th~t rrllw IS
ILc synlas of thr prrr~mm Soumc unim wc ckrwllird mItI

~PS dwndw on the IYF of lingumut txmsmi. I II,W
which [hey arc derived, “1.hccurrcnll y ~uppwlcd vtllr~ I:

CXdb A Now Wow on Opllmfmlbn 3 of 22



unil lyp~%* died granularitie& m W in N 3.

Tabla 3. Sourc9 UnU Granularity

Greauluhy I Ducdpskla I1
‘tiapeuon I my Vxlidm bmeual or -Ulenix. i

Sluemenl my Velid eulmwnlinllmcurrm
mute lsnguegt

Black U.xrunarsltw wfuLiraJLEIhe bodyor a
roti, ~ or mndidonxlaruwul
m ileretiveawuuct (esempkx:for,
while. m)

Rouli.ne ameinroutine.mbroulk of hmclion

lkh !$~ enfrycomins the following infomnation:

indm Unique integer index wilhin .sul file

kind Granularity of sauce unit, see Table3

position SWI andend source positions

scope ncde Rcfcrcnce 10WOpCnode, sccdcscnpicm of
Stop nodes blow

7% sourceunits arc formed into utcs hti on h kxical
ncsiing of lhcir source positions. The source unil tree is
used 10 tcmtrcI the highlighting of program lCX1by the

Flguro 1. Examplo of swrcm wls m ForIran
.—..

u=r inmrfxcc. Figure 1 chows examples of the diffcrcru
~ofscnsrc4 miIsinal%man rouIirw.

- “3 ~~~hformutkn

ypdscr informakm (TSl) dam file conrains the
encoding for tie type descriptors, wow nodes, scope
entries, and scope blocks for the compilation unit. Each
fronl d produce the following informaoon:

● A scope ●nwy for each user-defined symbol. Scope
entries an used to mcdel tie differcm symbol types
Ilrascan ~ in lhc program’s lexical environmem.
s;urr’cnlly, Iherc arc five atop enuy Iypcs: variable
●nrries (iwluding rwtincs), rypc cnrries (C lypodcf ‘s),
~ lag emries (fw smws and unions), conurwnblock
enmies (Foruan common blocks). and ●numeration
Cnrr’1-a(cnumcraLiar Iilcrals).

Q A scopeti m W Alas the ‘imp of rhc symbols
in h murcc code. The scopenodes form W lmkbonc
of h lexical scoping cnvironmenl, Scope nodes pro.
vidc diffacnl kvcls of kxical visibility. Scope cnuics

on Uw same ~ node have tic same visibility.

● A scope block me lhsl rcflccls lhc block struchrrc of
lhc smrcc cak. Scope blocks arc used m spcify arbi-
lr~ progmm symbols from any point within a pro-
gram, For example, 10 rcfcrcncc sunics or common
blak variab!%s. To rcfcrcncc a program symbol in
anoshcrhnch of W scopecnvironmcn~ tic debugger

r
+ SU9ROUT INE ABC

I * REAL*4 A(1OO), B(loo), C(loo)

~+ DO I - 1, 100

‘p Block

~!%-%= ’p’’”i(””

c

R() utinc BIwk

I Slalcrmmts
A(I) - B(I) +~(”lyl
PRINT 99, “I - “, I, “A(I) - “, A(I)

40122 CXdb A Now Wow On Optlmlzallon



Tho Cornplbr-Babuggor lntarfaw

uses scope blocks LOnavigalc dwough IJWsmw envi-
7011mCt’ILScope blinks provide a means forrcfcmhg10
scap Icvcfs (nalcs) by name, Sc~ blocks arc Linked
downward 10 all immcdialcly ne.sud scope blinks. A
path dtrough tic scope environment is s~:fid as a
sequence of acopc block names from an ouwnnost
XOPC bkk rhn to tic desired~ bbk

The layout of be TSl file is mom complicated than olhcr
daLSfiles and dc-smmsa liule mmc aucntion. Figwc 2 pe-
scms Lhcgcmal Urucmrc of the TN file.

Flgurc 2. TSI lib Iayoul

E%
type info

scopeinlo

r““’’’-’’””’scope
lnfcwmtion

—
T

TIn mnaLiun

The debugger h:uder is II slandtird header, which s11
dctmg~cr dwa files conuin. h comains sim and version
in[or,malion verifies the dxt file wns crcamf by a vmion
of dIc compiler comfrmiblc wiih tic caccuting version of
CXdb. The TSI hcudcr comains information describingtie
number of cnlrics in lhc scclions Ihal follow, as well as
poin[crs (offscls) 10 lhc sum of lhc olhcr soclions in the
file,

~c .rcop fq/ornuJlionCOfIsisL\of n seriesof xqm critics,
scope nodes, and scope blocks as dcscribcd above. The
rypr infimrufirwr consim of a series of type dcscriptnrs
lhm urc mdcncd by scofrc cmrics, All user.defined dam
lypcs arc dcfimx! in IJrisduu filr.

2.2 Back=endCornpononts
‘llwcompilerImck*nd crtmcs dam files to reprcscnl the
layout ofobjectcodecorresponding 10input sourcecode.
k data fiks inchldc informationon:

●

●

●

●

●

Variable amibum (user and curnpilcr-syndmiti)

Ob~t+ti 10source-cdc mappings

MCmCMYlayout of sectionswithin lhc object file

Ephncml variablekmuions

Syntisizcd vmitiblcexpressions

Each kkand gcncralcd dara file is dcscribcdbelow.

2.2.1 Expromlon Tabla
Tlw eap’cssion tabk (WT’) encodes information for htm-
dling compikr-synkmzcd variabks, The c~pik gener-
ates synthesized variables as cilhcr a rcplaccmcru for n
user-dcfiv.d variable (called a derived syruhcsizcd vti-
●blc) m a mechanism for rundmc SUPPOII(called a runfim
syndtesizd variable). The variable is symhcsizcd so hut
eilhcr opdmizAms or code gcncltion may procccd wi[h
kss dif%cul[y,

Rx a dcrki synlhcsizcd variable, the wcs of the old vuri-
●blc arc replaced with more c~lcicnl uscs of a derived
variable, Somclimcs, all uscs of lhc old variable nrc
rcplaccd and the old variable dots not physically cxisl,
Tlrc ncw variable value is cxpm.sscdasa Iincar funckn of
*C vtiablcs from which it was derived. For example, drc
usermay have Ik following code:

while( X[ i++] !- O ) ,..

Ralhcr lhan incrcmcnling i, multiplying il limes Ihc silr
of an elcrncnl of x, and then udding il 10tic bJsc mklrms
of x, LhcUxnpilcr optimi7~s Ibis code by rcplncin~ i wilh
a variablerhmh compile.t,imc tompulahlc and irwrr III CIIIS

USC variable(call il ?ifoo) by ~izeof (x [o])oncdl
imuim TIKrcsukam variable isderived frwn Ihc follow-
hg Iimr cqual,ionbawl on *C a-iginnl vnrinhlc 1,

?ifoo - 6X + (i “ s~zeof(x [O]))

By mairwaining the Iinrar cqumirsnshrIt Wine u xyIIIhc.

n17,0dvariatrlc, tic d:huggcr cm solve lhc cqutilion I(N I
m derive ~hccurmn[ VUIUCor Ihc varinhlc ihm hm IWCII

CXdbA Now Wow On Opllmlzallon 5 of 22



replaced. In the example above, the value of i can bc
expressedas:

i - (?if30 - Ax) / sizeof(x[Ol)

Runtime syndtcsizcd variables arc created m hold infor-
mation needed r.t runtime. They may be created for many
reasons. Some examples arc: Uacking vccmr knglhs, sc-
aling vc-aor masks, sacking vcclcwspills, rclaining argu-
mcnl poirums, cu. This 1~ of symhesi~ variable hasa
dirccl value and, Urns, no corresponding linear equation
SCL

The XFT comains the following information foc~h syn-
lhcsizcd varhblc.

Purpose An indication of tie variable’s use (for
example, vwlor spill area, vector length,
ClC.)

Idevtlflm \l~riabk n~~

Type Enumeration value indicating the specific
synthesize-dvariable Iype

\’T Index Rcfcrcncc to tic variirblc ~bk enuy foc lhc
synthesized variable

khprcsslon Linear quation encoding for variable
:rec derivation (not included for runtimc

SUPPOI’Ivariables)

2,2.2 Localh’r R@ng. Table
The location range table (LRT) cnrodcs infrmmuiwr to
uatk *C home Imalion of a vnriablc nnd tic inn-tic VM.
utdc-lo-locmion bindings. Possible machine locationsarc:

● Registers

● Wick hamc rchuive (for Iocnl variahlcs)

= Rcgismr relative (for argumcrm$)

● Scgnlcnl RIMIIVC((or s~[ics and glolmls)

Varidrlcs cnn have txmh homr Imwion entries (the Iota”
mm where the variable residesat Orroughoutprogram cac-
culion) and rphrm~rul Iocalimr cnlrics (describing L?c
\iUIOIIS run-time lr~alions).

[inch rnl~ in *c I ,R1-conmins lhc fullowin~ informalim:

t’1“ Index Rcfcrcncc m Ihc vnrirltrk Lutrlccmry

Addr ran#a

Location

Sian and end instruction addressesin the
excmuable image over which his enuy
holds true

Machine Icxation enccding

Due to optirnizations a variable may hwe multiple over-
lapping enuies. Given an execution address (PC) and a
variable, b LRT indicalcs which kx.mien(s), if smy,arc
assrxi,ald with IhaI variable, as follows:

[PC, Var) ~ (Loci, . . ., Loc~)

Given a PC and a m=hine location, tie table can also bc
@to dcmnnine which variable currcru.lyresides at hat
location. The following quadon is used when examining
lhc rcgislm M slack fmmes m dctcrminc assaialcd vari-
ables:

fPC, LOC) * (Var)

Ifno location is lmund 10a variabk, lhe variable is said 10
be unavailable. Unavailable variables can occur, for
example, due to constanl propagation and redundant
assignmentcliminaliom

2.2.9 Su310m lbbk
The suxion table is not encododwilhin a spccitddata Illc,
but is encoded within the symbol Lablcof Uw crcamd cxc.
cutabk. S@al STAB cnuics encode tic following infor-
mation:

~pe ?%c section type (TEXT, DATA, CIC.)

Address The sccticm’sbase address

ObJcct fllc Tlw object file contributing 10this sccvion

&h ob~I file may conlrhuc a plion of lhc WRLchin,
bss, Idala, and tbss sections of tic finnl cxccumblc. The
uhk maps virlual addressesin an cxecumblc 10 rclmlvc
addresseswitiin ● acctionof an objmx module, l?ris m,lp,
along witi lhc NS, TS1, and SFM, conuol tic on-dcnl:~lld
lading of ckbuggcr dam film.

2.2.4 6ouroe Fllo tip
Like the section Iablc, the source file mop (SI:M) is
cncodcd wilhir the cxctuuklc, llowcvcr, il is cncodrd
dirccdy within Ihc ICXI section of ihc ohjccl code pr~~-
ducd h is simply;. list of hc sm.rrccfile mrmcsIIWI pnt
dud Ihc ohjccl m.

e of 22 CXdb A Now View On Opllmlzallon



l%. Compllor-~buggor tntorfata

2.2.5 Sourco Rang. Tabls
The source range table (SRT) encodes information
describing the obj~t code ranges for -h source uniL A
sourct unit. as &scribed in S“AtiorI2.1.2, is a hid ~-
ponenl of the inpu! mtrce code. Wn.bout optimization, a
singlesource unit will map to a single rangeof objm mdc
(that is, a single statcmem may generate a scqucmceof five
machine ins~uctions). Optimization destroy Lhis l:N
mapping. Optimization merge, split, remove, and repli.
cate tie object tale assctiated with the input some units.

The SRT is a two-way, }!’M map from source units to
objcc[ code (PC) ranges, Each entry in the SRT contains
Ihe following inform.ation:

SU index Source unit index

Range Range of objcc[ addresses cccupied by this
source unit. The addressesare reltive to
the beginning of tie object file

S}11 Index Source file map index

Optimi/ations (for example, instruction scheduling) may
crcat~ multiple entries for a source unit. Multiple source
uni’~ may contain tic same add.rcsskause source unils
arc nestedconstructs (thal is, a routine may contain loops,
which con[ain blocks, which conmin sLatcmcnts,which
conlain cxprcssicms).

The PC-m-SourccUnit mapping, following, dctcnnines the
aclivc source units al a given pro~rum Ioculion. 11also
dc[crrnincstic currm scope bxm,rsc source uniLsconmin
WI mdcx to u scopenode, The user inlcrf~c usesthe active
sourceunil wec 10 dctcrrninc which sourcecode ~gments
m hlghligh[.

(Pc) = IsU), ..., sun}

The SourccUnit-to-mngc mapping, following, dctcmnincs
[hc s~rtillg nddrcsses of a specific source unit, Withou[
op[inli?.utiorrs,thL$mapping is [ypically 1:I (tial is, each
sourceuni~rnal)sk-ra single ntngc O( addrmsa), However,
when optirnizn[ions arc applied, this mapping bccomcs
I :N. l’hc dcbug~cr uscs the starting addresses, or enmy
pf~in/.\,[u n SOIMCCunit todcwrminc whereto pla~ Mwk-

pt)inl instructions for managing slcpping2, Mcukpoin Ls,
tmcclmmlls,and CVINItpOlnL%.

(S[J) -- {14atlyPi, . ., Rarlqel, )

2.2.6 Wrlsbtm Tabto
The variable Lable (VT) encodes information about all
user-dcfind and compiler-syndmsizcd vfuiablcs in an
object module. Variables are divided into two classesLM
i.ndicatcthe extent of tie vtiable. nose variables whose
lifetimes extend acrossthe cnf-i.reprogram have indejfnire
cxfenl and those whose Iifc is restricted to a particular
=o~ have de~le exrent.

Emplm of infinite extent variables arc suit and exter-
nal variables in C, package-local variables in Ada, and
common block variables in Foma.n. Variables of this type
are allocatd a home Iocafion in global memory. During
program execution these variables may be allocated 10
other locations(for example, rcgistem), The location mngc
table dctcrmincs the run-time locations for a pivcn vari.
able. Scc the discussion of the LRT, Section 2,2,2, for
more dctils,

Finite extc.mvariables, which includes all au[ornatic vari-
ables in C, have no home location but may s[ill migra[c
bctwccn machine Iccations witiin tic cxtcm of their lifc-
tic as &cribcd within the LRT,

Each VT entry ctmtaim the following inforrnittion:

l-’ype

Storage
class

Reference

FlDg9

Scupc entry

—

Synthesized or user-dcfmed

Sloragc class of variable, This is a much
broader definition than is used in
conjunction witi C. Some examples arc
auto, suatic,dynamic, register, argumcm,
section bnscd,ctc,

Rcfcrcncc to rcla[cd vurioblc (for comrnorl
blocks, cquivulcnccs, and bawd vuriul~lcs)

Flags tha[ define addi[ionol a[tribulcs of Ihc
variatrlc such a~ row.wise army, Crny
~inmr, dummy argunlen[, compikr
temporary, ForLranformul spccificr, CIC

Index to the scopecm-y defining 1111$
variublc. The scqx cmry conutins Ihc l) Ilc
dcscrip(or for the variuldc

... . . ..

CXdb A Now Vlow On Optlmlzatlon 7 of 22



U8ar Intwfca Components

3.0 User Interface Components

CXdb usesCX/Modf (Convex’s vcraion of lhc OSF/Modf
tmlkh) [OSIWl] for its ~phical user intcrfacc (GUf), and
lhc Maryland Windows Library lTbrS3] for its ftdl-~
CRT user inwface [Bfi91].

Allhough Ihe CRT interface dots not support a dirccl
pointer device (mouse), pull.down maws, of pp-up win-
dows, ii dots provide a Pwerful multi-window emiron-
mcnl that maximizes h usc of a CRT’s limited mecn A
esrarc.The CRTinmrf~e supprs the highlighting rraes
sary 10provide program unimation as described for lhe
GUI source window in Section 32. With Ihe Iimiiations
noted, the CRT interface is wry similar 10 tie GUI pre-
sentedbelow. II will ncnbe discussedfurther.

llw W] iscompscd of several spializd windows used
m inmract with the dcbug,gcrand the -c? pacss. Each
window is introduced briefly in the list below and
dcscribcdmore fully in subwqucnt ~tions,

Command All command enuy (via the keyboard)
Window is through this window. It conla.inspull.

down menus for access to tic full CXdb
command WI (command composition), and
expert huucm for access10commonly used
commnnds (via tic mouse).

Source
Window

Disussrrnbly
Window

Kxuminr
Window

All program source code is viewed from
bis window. Source uniLsnrc highlighted
10 indicmc program cxcculion. Source
birscdcvcrupoinrs’ arc indicmcd by special
icons.

Prcscnls an nnnotatcd listing of tic
dwrsscmblcd objcci ccdc of lhc cxcculshic.
Addresses arc annouucd wiih tic
msociatcd variable name (if known). Pop-
up windows provide access10 the machine
rqislcr ttalc, Evcnt@nL$ arc also
indica[cd with icons in this window.

l’rcscnls [M conlcnts of processmcnmv
in n wide ran~c of user-seIwuhlc fornuLs

stack
wln&w

Frac8s 10
window

Help

Presentsa backtracc of tic currcm stack
c-omcrms.I%int+nd+lick operations
pcscnt Mailed information on sclcclcd
stack fmmcs.

All I@ oprations on lhc processking
debugged arc isolated wibin this window.
It provides full CRT emulation.5

Provides accessto *C complctc online
Rcfcrcncc Guide [Conv91b], Sophisticated
searchcapabilities provide easynavigation
bclwocn rcfcrcncc page-s.

tih of the source, disassembly,examine, and suick win-
dows arc crcatd on a pcr-lhrd basis, This provides tic
userwilh diml wms to individual tlucad stale in a parai-
Iel application, Multi-breaded application support in an
integral rmrrrpcru of CXdb’s design, SU Section 4.3 and
4,4 for addidonal infonnarkrn on muitiplc lhrcad supporl.

The combination of ticsc specialized windows prcscnl a
synergistic intcrfncc providing rnpid access 10 program
information and cffcctivc conlrol of Ihc lurgcl process,
Each of the majcwGUI componcrwsam dcscribcd hclow,

3.1 Command Window

The command window is tic mujor focal point for conuol.
Iing CXdb’s operation. 11provides a series of pull. down
menus and buttons prcrvm’irrgmouse-based r,wccss10 illl
CXdtrcommands, The command window cnublcsIhc user
10:

Enter CXdb commands

R-ivc uulpuI from CXdh comrrumrls

Rcccivc cmor mcsrm~csor SUIUS informmion ubouI
CXdb commrrnds

Review previous commands and rctricvc Ihcm frtml
WCcommand histmy

Control the crcmion and disphry of Ihc oNlcr windt)w$
wimin ~ (iljl

ruIwI mpplmd wh k X Wimkw SyslrlIl

8 of 22 CXdb A *W View On Optlmlzallon



Mor Intufsm hparmnts

Flguro 9. Command window rnmmnents

Window menus Cornrnsn d -US Window number

Co~rrmnd buttons Cohnd Iinc and prompt scroll bars

Figure 3 shows the major components of lhe commsnd @in this cmmpleweretaken from an ~nml CXdb scs-
window.

3.2 Sourco Window

The sourcewindow displays k zrourcccode for lhe appli.
cation being dchuggcd. Scroll-bars srld pull-down menus
provide quick occcss10the sourcecude wilhin lhc appliu-
liunl

~lc currcnl poiru of cx=utiun is indicntcd by highlightin~
Ihc inncmmsl active source uni~ in rcvcmsevidca(sclivc
sourer units srr dclcrmincd by MC PC and the SRT, SCe

Scclion 2,2,5). Figure 4 showsthe sourcewindow comain.
ing n Iimrun cudc frngmcnl where k awignmcnl on line
4(; is hl~hlighlcd, indicming lhul dIc assignmcm is hlng
Iwrl’onncd,

l’hc source window’s capuhililics arc best dcscribcd IIv
cxumplc. ‘Ilm following example shuwshow highlighting
CM convry the execution hchuviur of Optimized w&, In
pllnirulilr, it drnmnsuwcs thn[ n prcci.scundcrwnnding of
Iitw lhc cxr(lrw~s oplimimd curl hc ohluinc(l by rc~rlitivc
~lrpplt}~ IN lhc muchinc inslru~’lmn Icvcl, l’hc pitvurcs

sion. Wilhm lhese pictures, the icon next to Iinc 5h,
qqmring ss a ●, is sctually sn eventpoint icon indicating
a bmkpoinl on Iinc 56 (lhc icon became unrcndnblc and
shiftml reward line 57 when tie images were scaled m fII
within Ibis &cumenl).

In the presence of optimiz+ition, no assumptions cun bc
msde about what has happened before tic cumcru PC or
whsl will hs~ afkr Ihe CUnWIl ~, ~C cfh?cL$Of OfIli-
mizsiion sre communicated through pmicrns of high-
lighted source units in a sequence, called progrurn
animation. Cormidcr the following scqucncc of source
window fmgmcnLs.A brcskpoinl husbeen SCIon Ihr rou.
tine whrxwfirsl watcmcnt is on Iinc 56.

Notice lhsl when executi~ MOPSon entry 10 IIw nwlit~r, il
dots not stop on Iinc 56 hu[ on Iinc 57 indirutin~ 111:11
insuuctioo scheduling hw rcmlmcd IJICconlpulnliwl. ‘llw
vnriuhlc N is hi@li@lcd indicating IhtiI Ihr Iirsl insllu~”

CXdb A Now Vlow On Opllmlzstlon 9 of 22



Flours 4. Sour- window with aourcs unh mwwtstlons-- —..
—

Sourem Winds Soucom Unit ~rooa~mUlndou.
fila: ●dd.f P=-S- #[O] thraad #[O] AILm

31 I

—

lion of lhc roulinc is Iosding N into a rcgiswr (the disas-
sembly window is cxlrcmcly useful when debugging al
Ibis Icvcl, sccScclion 3.3),

Smpping onc muchinc insuuction rcsuhs in highlighting
lhc conshm Oon k previous Iinc. Iinc 56.

Like vurinblcs, o highlighted constant indicates that the
cmwml is being Ioadcd inlu a register, Jumping from M
expression in onc smmmcm 10 an expression in a subsc-
qucnl, or even fmviws, slulcnicnl is Iypicd of Insmrclion
rcordcrirrg. Ihc ubovc ,scqucnccshows tiat k efku of
reorderingcrmnolbc mrvcycd smtiully. bw only dynsrni-
CUIIy throughanimation of rhc progrnm’s execution.

Slrppin~ nguin resultsin multiple xmrcc units Lininghigh.
Iqlh[rd,

‘lliIs imhuulrs dull llrc Iligllliglml cxprcssims m quiw -

IWII, ‘IIIc IIW ()[ IIIC wwinldr Nhl 1 in [hc prcdicnlc of ihc
C\111(1IIIINId I% quulcd by IIIc t~mlpilct wilh llrc dcflnillml
[II N hl I (NI IIIIC 5“1(tissIgImIwII whlilution),

Anchcr up rcsulrs in tic highlighting of ~c assignment
10m.

This indic.stcslhal lhc vsluc of INFO is being updwcd, In
gcncml, assignmentswill be hiphhghlcd during tic conl-
puustionof tlw bahte of h mwignmcmh(Ich-hsnd side)
as WCIIas the slorc, w register Imnsfu, of tic msignmcnlm

Slcpping again cauxcs *C conditional expression on Iinc
511b h highlighkd.

‘lTis indicalcs tiI the prcdicalc is abouI w k CVUIUUIWI.
Rcull M ti vsluc of NM I wim hi@li@wd (cvirluimxl)
in a prcviuus wcp, llc !wxondopcrsnd, lhc consuml 1, IMS
not kn highlighted indicating dw ii is UWI M uti immc.
dia~ operand (tie disassemblywindow curlconfirm this).

. . . . . . —.

6. ‘him AH 10 umpik idionyntfm’icn; tNIl s qmili(alilm III llw

h@lighling mwkl

100 I 22 CXdb A Now Vlow On Optlmlrsllorl



Uaar Inmfaos Cump0n9ni0

After the predicate is evaluated. the asaignmcmtto NMl
aclus.

ii” I Fl!ih. l)wio70

Had NM 1 not been needed in later computations, the
assignmcmtwould have ncv= h highlighted, indimdng
that it had k climin,atd (cicakode elimination), Elimi-
nated code, such as dead code or rulundam assignrnems,
arc conveyed implicidy by never being highlighted (see
Section 5. I for titional discussionof this lopic).

Finally,the IF statement on line 58 is about 10b exocutod.

Flgura S. DisaseombtyWindow

llw IF is highlighted at the conditional branch that tcsls
the result of Ihc fmlicatc. In this case tie consequentis a
GCYTO,which has ken folded into the senseof the condi-
tional Imnch. When the consequent is taken, the GOTO
will not b highlighted, becauseconuol is short circuilcd
tow 70.

This euunple illustrates that highlighting in reverse video
can convey tlw effects of numerous optimization, How-
ever, it is not wf6cicnt for more involved optimization
mxh as hoisting or sinking. See Section 5.1 for potential
mlulims to - exiuing highlighting poblems.

3.3 D18a8~bly Window

The disassembly window is the main access point 10 the
machinelevel &bugging featuresof CXdb, Tho dkasscm-
bly window provides access to the disassembled objccl
code of ths target procew. Figure 5 shows an example of
k disassemblywincbw. Uh disassembledinstmclion is

Menus Window number
Page up

DI ●asmcmblMuIndou Inmtructloi+lw Rm~lstmrVhu

“m
11X.(OSIll romeooo29* LD M*1R

omIrIo79mrI m n.rn*lRIxOtn~lho~I tili:w ●9.* I
0nOOO029a7 DLD-MOTRlX*( Onlb2J I nul. u ■4.ml

●hl. m ●o.m3

I 11
9!, M ●3.-7l47ll4*ntm4)

OM ,IO07QC(? BLD.MaTRIx*(OBldO) I 1dwa -bl~matrln- o(ondbc),
0. Uwwcb mu. mnlLilx*(uxld6)l ;:1$ .rorom-~r. k
O 0002CICC BLD-Hhl PIX*l Onldc)l i9(r0).ti

0000?9LI0 mD-tlslRlx*(Omlmo)I

I

I

I
II

CXdb A Now Vlow On Optlmlzal Ion 110122



annoLamdwiti the name of the rcfcrencd variable. The
LRT, see Scmiorr 2,2.2, maps machine locations to vari-
able names’.

The disassembly window has an qmating mode called
aum.updrm mcxie. In autcwpdale mode, the disassembly
window is updated every time the process stops. The
region of objccl crxle surrounding W K is disassembled
and displayed. This mmle is mom useful when visualizing
program execution as described in Se&m 3.2.

The mrget process’ complete register stale can be dis-
played through pop-up windows created from the disas-
sembly window’s pull-down menus. Tlmse register pop
upsarc dcscribtxlblow.

3.3,1 Roglstor Pop-upc
The disassembly window’s pull-down menus provide
accessLOpop-up windows displaying W complete register
SUICof rhe processbeing debugged. l%e following regis-
mr SCIScan bc viewed:

● Scalar rcgislcrs

. Vulor rcgislcrs

● Communication rcgimrs

. PSW detail

Wlum?vcr the pop.up windows arc displayed Lhckcor~.
mm arc kcpl up to ctac. When tie processstops, the rcg-
islcr VUIUCSarc calcrrlmcd and rc-displayed, Fig~ “e6
shows tin example of the scalar rcgis~cr pp-up window,
Slmililr M the annokukms on the dksscmbl y window, k
register pup-ups arc Iabclcd with variables currcnlly
Iocmcd wilhin each register.

3.4 Examlno Window

Ihc cxnminc window ,$ rmothcr tcml .X working brlow
Ihc wurcc Icvcl It provides n fonmmcd view omo a mem-
ory rc~ion lhc user conuds the displily format with a
p(q). up diulog window. The formnls nvuilablc include a

FkWXOO. Sc41ar r@tor pop-up window

SCal ●r R-a Iatcre

Procm8B [S0/01
pc : 8W0295E
paw: 039094B0
tp : rffrca20
●p : WO02bbc
● : Bmodo2e
●4 : Omooom
●3 I mooow
●2 t BO0472d4
●l : eoooclm
●p : Fffrcalo
87 : 00003030 00000000
S6 : 4a2c4b29 3d20202d
85 : 41545249 5B2B492c
:; : 20332020 00000000

: 3d203 120 00000000
m2 : 493d2031 00000000
S1 : 202d322@ 00000005
sO : 00000000 00000004K

A

~1 cl08C 1

&
1

Vanablc K currently in register SO

choice of word size (from onc to 16 bylcs) and Iypc. TIN
possibletypes are:

decimal

unsignedkimal

hcwkimal

octal

binary

Ckw

Iloa[ (tixcd and sricntifk mnm.ion)

Fcmrm logical

Funran Cumplcx

llc examine window, Iikc tic disussrmtdy window, hos
an auto-updalc nmdc where lL~conlcms arc updmrd cm h

120f22 CXdb A Now Vlow On Opllmlzatlcm



Plaura 7. Examino window

Data Iorma

Esamln-1~ OauVlm

a fOfWMt: (h9rC d9Cl~l) P~M9: [~/0] A1lvQ ❑
rangs: 0x600SSWI. .ORWW41O

msmm : 1 3 4
SO05M18: :
6o05&3za: : 10 < :
60056038: 13 14 1s 16
600S6046: 20
6o056Jsa: :: :: :: 24
600SW6U: 26 27
SWSM76: H 30 31 ::
~SMS6: 34 35
SW5~B6: % 36 39 :
W5W6 : 41 42 43 44
SO0560b6: 45 46 47 46
6W560C8: 49 so 51 52
Soossoda: S3 54 55
600S60C6: 56 x
6CKMMf6: :; 62 :: 64
6m56106: 66 67 66
Smsalla: :: 70 72
6QOS61?6; 73 74 ;: 76 ,
S00>8136: 77 76 7m M
S0056148: 61 8? 63 64 1
80056150: 8s 67 am
80056166: 69 : 91 B2 1

I 1005 I17B: 93 M as M

time the processslops. WhlI Ihc examine window in auo
updac mtic you can watch a segmentof p~ss memory,
suchm pllrl Of an ~y, change az YOUSICpf)70CC6SeX~U-

Figurc 8 slmws an cxampk of he swk window,

urn Figure 7 shows an example of tie examine wiruhw,
The slack window prmides poim-and-click access 10 II
pop-up window lluu displays dcuilcd information &houI

3.5 Stack Window sclcwed wack frames, The pop-up displays the followin~

The smck window rmscrms a symbolic backtrace of Ihc
Infomnation:

currm progmrn stuckcomcnts. ;%c information displayed ●

is cquivrdcnl 10lhal of the backt race command, ]1ccm-
tins an cmry for -h call frame on tic srack. By default, ●

k stack window is in aulwqxhuc male. Each cnrry can- .

tins tic following infommtion:

●

●

Frame number
●

Exocuiiun addrc.xsal time of cull

Frame adlrcss

X wilhirlllamc andsymbolic Iuwlion

Sollm languageof frnmc

Agumcnl namesand valuc$

Lacal variabk nam- and values

●

b

●

NIImc of functim F@c 9 showsan example of lhc frumc pop-up wind[nv,

Argumrnl nnmcsand vnlucs
3.6 Procou 1/0 Window

SymMiCpru~ram Imxlion
llw pmcus W window isohum all [he ~r[ prucrss’ 1/[)

Omrcnl irurnc indicumr sclividcsi This isolalion m)vidcs Iwo dislincl inlctucll(m

CXdb A N@wVlow On Opllmlzallon 130122



Uaor Intarfaa Compafmto

Figuro a Stti window

S~acWl ndw FrameVlew

la PC ■ 0x~1644 process: [#O/O] Allve ❑

Cbo:

-i

0x6W1644 in UINCE(A = (INTEGEW4(l:dTW@, l:<~pb))

t

1 : 0X800013ea in _U41N() (MfkEng&parall@l. f 11~ 13)
2 : 0x60003,ae0 In ~ln(l, OxffffcSn, 0xffffcS9U)
3 : Oxaooolodo in _ap$envreK() A

Symbolic I*ntion

L&&r’ ‘c
radino Argument values

Flour. 9. Frame ooo-uD window

conlcms: one for CXdb md snahcr for tic remet process,
The X window application, xwrm, manages ~Is window.
Xtcrm provides complete CRT emulation allowing the
user 10debug qrplimkms hat do full screen formatting,
The aepration of interaction also fruamnlca that the tar-
gcl mtx.ess’ cam’ol of lhe output Scr=n will not be dis-
u,rrbl b. m~=ting with CXdb. B=ausc this window is
just an x~, no exampk of it will be shown.

3.7 HOIP Wlridow

The helpwindow displays online help text relating to vari-
ous CXdb ~ics. The help window appearswhen you usc
tk he 1P command of ~ss tie help cxpcrLbuucmon the
C(M’ElmSEldwindow.

Theonlinehelpsystemconlainsall topicsh LhcCON\’EX
CXdbRqftrenccmanual [Conv91b]. These topics cover
four calegodcs of Infamalion:

Cowxpla — Explanations of Ihc major lopics involved
widl usingCXdb,

Commanda — Descriptions of all the CXdh ci)n)-

mands,

Parametcra -- -Descriptions of smnc of the n];l,jor
comrnundpammders.

CXdb mcasagea — Explanations O( informmiun:ll

mcssagmandemormcwqcs gcncrwxl by CXdh

140122 CXdb A Haw Vlaw On Optlmlzatlon



Cumnund Languago Compomnt9

You can either request help on a listed topic os you can
search the help files to Imtc a panicular word w phrIUR

Figme 10 ShOWSa CXilIll@COf k hdp W-.

4.0 Command Language Components

CXdb’s command languagewas&signed to povik a fea-
wc-rich md powerful debugging environmcnL CXdb’s
Canmand alvironmen 1provides the following fcat~

A log of allcommands atmd (including maw xla-—
tions) can be maintahd,

The output of a commandcan be redirectedmme or
more files (when combumd whh command logging an
entire record of a CXdb sessioncan be crested).

Flour. 10. HOIDwindow

EventPoint handkrs can be crcatcd tii ccnsist of any
sequence of CXdb commandss. When handlers arc
combined with output redirection, a user can create
pmrful new featureslike tracing a variable’s value or

~11 ~ cmeixh call to a function.

Customize the command language with command
absa and mxxos.

ManyOfcxdb’scmnmandsfocusz@6cslly on handling
optimized code. These specialized commands are
~ in the frdlowingZaHions.

8. hap ~mds Lhlcuue poccssex~usion,likeslep.The
fesuasrcornrnsd csn be WA lo wnbnue LUWCSSexecution.

s

.

CXdb A Now Vlow On Optlmlzatlon 150f22



Command hnguago Component

4.1 Informational Commands

CXdb provides an CXUllSiVCm of commands that provick
information on he stem of CXdb and the target psm-cas.
InformWon may b obtined on h following broxl c.atc-
gorics

● CXdb’s configtsmion

● LX&A eventpoints

s Command alkmes and maxos

● Defined key-tidings

c Default signal handling seaings

● ProcessSlale

● Processregisurs

● h3CCSSswk

● Excmmableorganization

There arc k-e commands that are specifically aimed al
oplimized cede handling: info expression; info
line; and info sourceunit. Each of these com-
mands isdcscribcd blow.

4.1.1 tnfo Exproeelon
llc info expression command is an extremely vu-
sar.ilccommand that provides delailcd information about a
language expression, The info expression com-
mand displays k following infonnarion about he s~i-
ficd languageexpression, when applicable:

[)bjrcl Type ~ of objca rcprescnlcd by tic
expression; onc of identifier, expression
resmh, or debugger variable

l.ocatirm Cumem machine Icxation(s) of he variable

S17.e “Rrtalobjecl size

Type Expression dam type

Valu~ Expression’s cument vtduc

,. . . . . .. .. .. ——. —

Y A Isngusgc capission is sny cxpmsion IJW is validin tie
curwnlm.uccIangMgcamlcxl WilhcsMnmi(mlforuting&hug.
~ervuiatdcs A spccifyinR nddrcss rmgcs and olTscu.

Llvenesa

Sptbesixed
Variables

Orientation

Bounds

Entry

Ret urn type

Prototype

Var ~pe

PC ranges and associati machine
Irxations where the vtiable’s value is
available. Outside these Iiveness ranges,
W value of he variable is not available.

Variables generawd by the compiler as
part of the optimization process Lhalare
derived from Ihe variable

Amay orientation: sow-or column-major

key bunds

Enuy point for a function

Ma type of Ihe value returned by a
function

The complem ANSI style prololypc of a
function

~ of objed represenud by a debugger
variable

The info expression command is the only way to
determine all of h locations tit a vtiable may occupy
(hat is, eceesato W IRT) or what synthesized variables
have kn &rived from ii (IM is, accessm tie XPT). Fig.
ure 11 shows an example of an info expression
command’s output lhal includes vtiable Iivcncss I ~ngcs.
Figure 12 shows oulpru thal includes dtived synlhesiizcd
Variables.

4.1.2 Info Llno and Info Sourwunlt

‘h info line and info sour! ~un.it commands
provide accessm ~e SRT information. The info 1 ine
command displays information on all source units thul
&anon ti specified line, while the in f,> sourceunit

commands displays the same data on u specific source
unit. llw following infcmnat.icmis displayed:

Soum unit index

Regions of object code gencrwcd by Lhk source unk A
sero region indicaus hat no objeci cd wa$ gcncruwl
fm the srnsrceunit.

Source lexl row and txlumh positions for Ihc sum WI(I

end of dw sourceunil

Scurce unit kind, su Tnblc 3, Source Unit (irtinulnri-
tics

Source unit Iexl cxlswxcd from the soumc Iilr

160f 22 CXrlb A Now Wow On Opllmlzallon



Flgum 11. MO Expmsion strtwinq iivauss mngos

(am) disasstil- SW: 1
Dlsassomb. ~ Procoss [00/01 from 0xUOO034a for 1 mechino inscruccions

oxaooo3cea mfsL-No+(ox5a): ld.w J,a5
(CXm) stop instruction

Stoppinq prommm :00/*1 by 1 imtruction
Procass [00/0] stopped steppir; ●t [Ox8DO03cfO] LEVZL_NO in chapter15.f line 38

(-) imfo ●xProssioa J
objoct t~pe: F~rLr~n idontifior

location: roqist9r ●5
oxeootic3e

>

> ;agpkJa&&
sire: 6 bycam
typ: INTEGER”4 Current Iivcness mnge
V~l U9: i

7 liwness ramps:
Start End Location

1. 0xBOO03cc2:OxEOC03cca - roqistor sO
2. 0m80003cfO:O=BOO03d04 - roqimcer ●5
3. 0aBOO03d32:9xBOO03d4@ - roqiscer ●5
4. 0~EOO03d5a:OmBOOC3d~a - roqistor ●5
5. 0n80003daa: OxOOO03dae - rwqlstwr SC
6. 0a80003dba: Ox8CC03dc2 - roqlsror 90
. 0xBCC590CJ:UxEOC5aOOn - 0n;O06dc38

Flguro 12. lnlooxprossion showi~ synthosuodvari-
—

II
5LI~ LEW1._U1(HN n B X’
RLw Ca(P.ti). B(H.NI “ “ “

CXdb AMowVlow ~Opllmunlbn 170t27



Command Languago Cempananta

The output of this command can be used LOdetermine
dead code (thal is, source units that produced no object
code), and code motion. Figure 13 shows an example of
theinfo line command.

4.2 Stepping and Granularttlo8

Sourceunits provide a much more -cd mh’slanding
of* ayn=tic kre.skdownof an application’s sourcecode
than is possible with the current STAB mechanism. This

enhanced undemanding enables much finer grain control
Ova incrcmerual pogram cxcculioll.

CXdb cxicnds the standard step a!ndnext cummands to
operate on tie granularities listed in Table 3. Supping by
cauh of the granularities provides its own unique advam
tagc. These advantagesare listd below.

Routine Steppingby routine proceds from routine
cn~ 10 routine entry. This is very useful
when dcbuggirlg unfamiliar code where the
mn.time call scqucrxe is unknown.

Flour@13. Info Im example

Imp

BltKh

Statement

Expreaaidn

In many programs tic loops me the most
intcrewing compmcnts (especially when
focusing on h optimimtions thal apply to
loops). Stepping by loop is an efilciem
mdunism fm moving from loop LoImp.

bee inside a imp, stepping by block
continua execution to the next loop
iteration, Oulside of a loop, it is a quick
way of stepping m the next lexical scope
change.

Stepping by. - -’-mcnt provides the
slmldard slcpping mechanism that mosl
debugger usersare familiar with, However,
its usefulness is extremely limited when
working on oplimizcd code.

Stepping by expression is cxt.rcmcly
lwneficiad when working on optimized
code. Many oplimizations occur al the
expression level.

33 Subroutine LEVEL NO(III. N. Q. B.XJ
34 REQL QtM.N}. B(PI. N)
-1=
J -a

me

38
39
40
41 I

DO J+. N
DO 1=1. M

TEr4P - 3.0 ● ~(J,J)
9( I,J) ■ TEMP/(2.b9X)
B(I. J) ■ 2.0 _ TEPIP

ENUDO

190122 CXdb A Now Vlaw On Opllmlrallori



Command Langrmgo Compononto

Typical debuggers,like dbx or gdb, implement steppingby
rcpcmcdly supping the uuget processby rmwhine imrmuc-
fion until il reaches tie next slatemem, This mechanism
works fairly well for summent level stepping, but CXdb
provides muhiple smpping granularities. Using an instruc-
tion s[epping technique on a command like finish
1 oop would be infeasible becauseL4e number of mmhine
insmmions execulod width a loop can be enormous.

To solve this problem. CXdb uscs a mechanism called
fransicnl brcakpoinrs. A mansiem brcskpcdnt is a break-
poim placed by CXdb m implenwu incrememal ex=ution
commands like step or next. The SRT is used 10 deur-
minc Ihc object code ranges mcupied by a given source
unit (for example, a Imp or su[ement). Transient break-
points arc hen pl~cd al the firsl instructionof each object
code range.

Once lhe transient brcakpoirus have been placed,tie P
ccss is cxccrued al normal execu[ion speed. when ti uir-

gcI stops with a breakpoim trap. the step operation is
‘0 Stepping with ~ansicni breakpoints workscompiclc ,

very WCII for routine. Iwp, block, and smtemcnl granulti-
tics. However, slcpping by expression is implcmemed
using lhc slandard machine Icvcl slcpping approach,
Bccausc of tic Inrgc number of expression wihin a rou-
line. ii is impractical w implcmcm wilh brcalqminls.

Bccausc a machine insuuction is not considered a granu-
larity (bccausc it isn’[ a source unil), Ihc step
lns t Jet ion command prrwidcs slcpping COn~Ol al

Ihls Icvcl. When working on hi[, ,. ~p[imized co& r tep

instruction and step ex}):ess ion buomclwo
of k most frcqucruly used commands,

In addition 10 the sumdard s t ep ml next commands,

~Xdh oNcrs anolhcr cmnmond, f 1n lsh, Ihnlallows you

I(} .wfp OUI u~a spxificd suurcc unit, For eaamplc, assume
cmcu[ion IIUS stopped somcwhcrc within a loop and you
want IOrun unlil Iht loop cxiLs,Wilh n~~ddchtiJgWS,you
wrmld huvc to Iocrm Ihc cnd ()[ Ihc loop rnnmmlly and

plucr a brcakpoiru there hc[orc conunuing cxm’ution, With
(TXdlI, you rmn simply Iypc f I n 1 !rh loop and CXdtr
will d(I uII Ihc work. Simllnrly, f lnish routine
rcsumrs CMJCUIIOIIuntil the currcnl rmmnc is atxu 1{)cxil,

Ncnek exaution is hahed bqfore conrrol rcwns to tic
calling routine. This provides the user *C opportunity IO
inlentlgatc M pogram stale prior 10 hxwing W roulincm
The finish command can be used on any granularity,

but Iwp awl. cuLinc are the most useful.

4.3 Sp6cIallzed Eventpolnts

CXdb’s eventpoint mechanism supporIs the following
c@3ilicies

Brcakpolnt

mmcepoirst

Wstchp.)int

Uelatioo

Exec

Hslt program execution when a specified
locationis reached.

Psiru a message when execution reaches a
spe.cificdlocation.

Halt program execution when a spccificd
memory region is modi!kl.

Halt program excmmion when a spccificd
language cxprnssion evaluates 10TRUE.

Halt proq. ,-n execution when il performs
an exec(2) system call,

In addition 10 lhcse fealures, CXdb provides IWO cvcnl-
poirus specifically for handling parallel oyimizwions.
They are:

Sp~wn Hall execution when any ncw thrcndsof
execution are crc.mcd,This dc[ccts regions
IJMI have kn pnrallclimd,

Join I-MIcxe.mien when any lhrcud joins ((h:u
is, cxils). This dcka.s when a tircwl htis
complclcd iLKportion of n ixmdlcl rc~ion,

4.4 ~tt@O Thrad &@pOf’t

CXdb was designed spaiflcully w hnndlcpnmllrl upplicn-
lkm. Most of lhc GUI windows urc ii Wuuinlcd mI iI llL’r-

Ihrud basis (SCCSection 3.()), I“hcrc IUC ::pcciul cvrtu -
pdnu fw delc.clin~head crcution and dcmh (src SLSCIItIIl

4,3), Finally, tic cornmnnd Iwrputigc wns built IU suppll I
multipk dwoad$in a consislcm mumwr,

F-th cmunand may hc prcfincd with n conmwndfitlu \. A
command focus apccifics ihc spcrifit procrssl 1 IIIId
Iluc.M within lhnl prtxcxs 10k ItfMcd hy ‘lw l’lw!wml
For cmnplc, Ihc communal

(cMb) :tl, 2 ●top

CXdbA NowV1.w On Opllmlzallon 19012?



Futuro Dlroctbns

will step only thrca& 1 and 2, Icavir?g tk other thrcada at

heir currem lacation. 7?re command

(CXdb) :tO, 3 backtsaca

praluces a stack backuacc for both thread Oand thread 3.
For commands that create cvcntpoints, s~ifying a cGm-
mand frxus de;ennincs which threads will bc affected by
the e#cnqminL For example, the command

(CXdb) : tO bs-ak routinm foo

places a breakpoint m the en~ point LOtie rou;ine foo
lhal will only affect thread O. Any olher thread [hat
encounters Lhe breakpoint will not IM stopped by il. The

dcfdull focus is all Uweads,which is equivalent to :t” in a
focus specilicalion.

5.0 Future Dlrectlons

Although CXdb is ve~ full-featured, ii is nowhere near

“done”, This wction presenrsa number of areas that may
bc pursuedas future cnhancemcrusof CXdb,

5.1 Enhancad Hlghllghtlng Technlquos

As shown in previous examples, simple reverse video
highlighting is suflicicru for many of lhc scalar opt.imixa.
lions, However, ii can not convey some of the more
mvolvcd, Ioop-oricrrtcd optimizalions suchas hoisting or
sinking, Also, code rcmovnl oplimixmions (for cxam:?lc,
dciId code rcmovnl or rcdundm assignmcm climinal ,on)
.Irc cwnvcycd implicitly by never highlighting Ihc nsioci -
alrd sourucurms.

Smrw possltdcsolutions10Urcscprchlcms ure di~usscd in
Itw hdlowirrg swuons.

5.1.1 Hlormchlcal Hlghllghllng
(’onsldcr the hoisling of Invnriam cwdc out ~lf a loop.
[IsIng rcvrr,:c video, Iwp invuriunt umlc will hc high-
ll~hmd when Ihc loop bccomcs active, I“hc highli~hting
d(n’s nw L’tmvcywhclhcr lhc codr is inside or cuL~idc the
hm)p,“Ii)umvcy this, himwrhuwl highhghtin~ is nccdcd,

In one focm of hienu%hica,lhi~hlightirrg all active source
units, not just fhc i.nnmmostsource units, would be high-
lighted. This must k done in a way so that nested source
units can bc distinguished Inactive source unirs arc not
highlighd. With hicmchicai highlighdng, motion OUIof
Imps can b amveyd by highlighting tic hoisud expres-
sion, bul not the loop body in which ii is uxmally nested.

6.1.2 CQllwyblg m@d-o
Currently,&-adwtk is indicated implicitly, that is, if it
never gets highlighted, then it is dead code. It would be
kmmeficialto make lhe indication of dad code CXp]iCiL For
example, one polcmial mehd is to use a different fonl
when displaying dead code in the source window. This
would provide a simple but effective mechanism for
explicitly indirsting dead code.

5.2 Multl=Prcma88 Dabugglng

CXdb’s command language was designed with the finul
goal of supporting multi-pmcess debuggirq: from a single
swim However, this hasnot yet been implemented.

Being able m debug muldplc pcccsses is Imcficial when
wing IO debug processeswhich fork and excc child pro-
ccsscs,CXdb will be able to “inhcrh” tic child ~rcr.,scs
created by k initial urgct processand rhcn prcscn[ thcm

to rhcuwr for debugging conuol.

8.3 MM=ArchlWWrQ SuPPOrI

In the cvoiulion of heterogeneous computing it will
bccomc rmes~ to dctwg proccs.wsrunning on Aissin~i-
IW archittxlurcs, TO @o~ this, thc dchug~cr will hilvt.
10 be able 10 handle the inlcruclion of proccsws which
havc difk.rcnl rcgislcr MU, mcrmy lnyouLs,CIC,Also, ibis
fedlurc tics in very cltmcly with remolc dchu~~itl~, dis.
cuwxl in the ncal section,

6A Rarnoto Dabugglng

Currcnl dny dcvcloprwcnl cnvilonmcnLx typicnlly ccmsiw
L; networks of workstwi(ms with a cmruul compNIr scrvct

for hsndling Imflc SCMICprohlcms. tinvironmcnls urr

hcmning more and mom disuihutrd Ii) suppm {hismvi
rtmmcnl well, CXdh will need m h Nldr h) dctm~ :1Iml
c~ss running on a rcmolr plnlli)rm. l“hls will nlst) 111$:1

mluwcmrm ((w kcmwldrhug~ln~.

20 Ot 22 CXdb A *W VbawOn Opllmlrallon



summary

6.0 Summe~

CXdb is an extremelyefkctive uml for solving difficult
dcvclopmeru pobkms, specifically debugging optimizd
ccnk By using u new mockl to communicate the rcmdtsof
ccnnpilcr optimiations to * dclwgga, CXdb ovcrcunc4
he Iimimhrts of SfA.B- and DWAFLF-tmsddebugging,

CXdb’s Compiler-Debugger Intrrface (CDI) incrcascs
@* space roquircments and compilation time, but much
morecffcctivclypovidcs compkx infmtnat.ion&scribing
optimizedcode. CXdb’s Graphical :Jscr Inwrfacc (OUf)
prcmts complex program information in -ily hcccssible
components, allowing rapid access 10 information with
advanced program animation tcchnqucs k am mmdedm
aolvc complex detmggi~g task.%

T’hc CDI and GUI, along with the ●bility to comprehend
granularity m a level needed for optimized code, make
CXdb an effective tool for understanding compiler o@mi-
zations and wiving di fllcult kvelopcru problems.

7.0 Acknowledgments

1 would like to acknowkdgc my colkagues who pardci.

pnlcd in lhc definition and dcvclopmcnl of CXdb,in par-
ticular. Gary Brooks, Russ Buysc, Mark Chiarclli, Gil
Hansen, David Lingle, StcVc Simmons, Jeff Woods, Mike
Garzionc, Kcn Hsnvard, Ray Cctrorw, Kcih Knox, Lloyd
Tharcl, Tim Powell, Rich Blcikamp, and Bill Twkclson.
Finclly, I would Iikc w tlmnk Kathy Hmis for hcr skill as
an cdilor and efforts al tnnking Ihi. ~ publishuhk.

8.0 Tradomorko end Copyrights—. .. —---- ... ..-,.. —-—

CONVI;X and the CONVKX logo (“C”) arc rcRistcrcd
undcmurks of CXINVllX compulcr corpution,

UNIX is a trwkmark of AT&T Bell lAoralorics,

X Win&w Syswm is ●uadmnark of MIT,

9.0 References

prHa91]

p3uch91]

[CoMc88]

[conv90]

lConv91a]

[Conv9

[Conv9

b]

c1

[Henn82]

[LuYI]

IOsml]

Brooks, G., Hansen, G., and Simmons, S.,
“A Compiler-Debugger lntcrfacc for lhc
Visual Debugging of Gptimized code”,
Convex Computer C~cm,
(unpublished) (Sqtcmhcr 1991).

Buysc, R. and Chiarclli, M., “A User
Intcrfacc Stmlcgy for CXdb”, prcscntcdat
Xhibilion91.

Coukwu, D. S,, Meloy, S.,and Ru=aa, M.,
**DOC: A Prxtical Approachto Source-
Level Debugging of Globally Optimized

Code”, ACM Proceedings on Pmgramm”ng

Lang-ate Dcsian and Iqdenuntation,
SIGPLAN Notices 23,7 (h!y 19S8) 125-
134,

CONVEX FORTRAN GptimizationGuidc,
2nd Edition. Convex Computer

Caporation (1990),

CONVEX C Optimimion Guide 2nd
Edition, Convex Comptucr Corporation
(1991),

CONVEX CXdbReference, ISI Edition,
Convex Compulcr Ccqmmtion (199 l),

CONVEX CXdbUser’sOuidc,lsl ~Hiitkm,
Convex Computer Corpmtion ( I!Ml),

Hcnncssy, J., ‘“Symbolic Debugging of

Optin]imJ Crxlc”, ACAr”?Fanrucriomr on

Pro flramwihq LanJrnagesand Syslemf, 3,3
(Jdy 19112)323-344,

Lu, L. C,, “A Unified Framework fcw
Syslcmatic Luop Transformations-, ALW
Pro fwedinps qf lb Synqxmiwn on

Principles A Pruclice of Parallel
Pronr-’ng,247 (July I W 1) 211-311,

OIwr Software f+nmdaliono “(lSWMolif

l%qmwnrner’n Ciuidc”, RmMon 1,1,

Prcnliur Mall, linglcwucul Cll[[s, Nrw

Jcrwy, Iwl,

CXdbANaw VlowOn Opllmlzdlon al of 22



[Ssuwo]

Nasrss]

[ZC1183]

[ZCI184]

[ZUSS90]

Ssrksr, V., “Insmuction Roordaing for
Fork-Join Parallelism”, ACM Proceedings

on Prograwuning hanguage Design and
Implernentafion, SIGPLANNLWCS25,6
(June 1990)322-336.

Wsll,D., Srivaslsva,A.andTkmplin,F.,“A
Noteon Hennessy’s “SymbolicDebugging
of Optimized Code-, ACM Trwactiom
on Pmgramwu”ngbn~uges and Syslenzs,
7,1 (January 1985) 176-181.

Zcllwcger,P,T., “An IntcrsctiveHigh-
Lcvcl Ikbuggcr for Conuol-Flow
Optimized programs” in ACM Proceedings
of the Sofrware Engil:eeringSymposiwnon
l{igh-Level Debugging, SIGPLAN
Notices, 1808 (Augusl 1983) 159-171.

Zcllwcger, P, T., “lmcmctivc Source.bvcl

Debugging of Gptimiz.d Rogrsms”, Ph.D,

Thesis, University of California, Berkeley,

CA, (1983); also Rek~fi CSL-84-5, Xerox
pARC, pdo Ah, CA (May 1984).

Zusawski, L, W.,“’Debugging Optimized
Code wi!h Expcclc.d Behavior”, Univcrsily
of Illinois m Urbsna-Champnign
(unpublished) (Augum 1990)

220122 CXdbA NowVkw OnOptlmldon



Debugging at the

National Security Agency:

“The State of the Use Message”

Tom Myers

ctm~ers@super. org

National Security Agency

9800 Savage Road
Fort George G. Ivleade, MD

20755 -60’.).,

301-688-7164



. Preliminaries

. Histonrd

. Cunent Situation

. Trends

● Conclusions

Outline

“4



Preliminaries

We are not

that different!



Preliminaries

. Diverse User Population

. Scientist/programmer (80%)
● lntera~tive experjme~tation

● Algorithm development

● Correctness primary concern

● Programmer/scientist (15%)
● Production code development
● Tool development
● Performance a major concern

. Diverse Workloads

● Interactive - consistent, fast computer response time
● Compile/link (seconds)

● Run/debug (sub-second)

● Edit/think (sub-second)

● Batch/production - run time or throughput

● Background



History - Where we’ve been

Since 1966users have been accustomed to fast,
responsive, simple window based editing and debugging

High speed (-250kb/s) terminals displayed 20 by 80 text
W!ndowsOneat a time

The debugger was a tool for browsing files and it knew
about the format of speciaI tiles such as the memory
image of a running process, core dumps, and
checkpoints (these all included kernel information)

The debugger processed symbol information from
compilers ~oannotate its displays and for symbolic
browsing (compiler always produced symbols)

The debugging window displayed 20 consecutive words
in a ~-ariety of selectable formats

The fast interactive environment supported debugging
one bug at a time



History - Where we’re going

In 1988 we began to change to Unicos, to buy
commercial off the shelf systems rather than continue the
development of our own system

The pluses - We got better access to Cray compilers, to
standard network products, and use of graphical
workstations

The minuses - Users got an unfamiliar, more
complicated, less responsive environment and tihe
debugging tools were a giant step backwards

Too many tools have a legacy of teletype interfaces

Users demand services and capabilities at least as good
as they used to have



Currently

They use print statements!

Why?



s

●

●

●

Current Debugging Situation

Users are conservative, they won’t try dbxlcdbx it

● Special compiles are needed

● lt doesn’t work on optimized code

● It’s takes too much time to learn

● lt breaks on some kinds of codes

Instead they use print statements which:

. Are easier to use and more flexible

● Work for all languages and levels of optimization

Lack of debugging tools has limited the use of multi-
tasking to large production codes

C)nlv experimental use of parallel processors, but againw
there is a lack of debugging tools -



may also be used in the context of a cast or in conjunction with the typedef
storag~ class specifier to declare a new typedef name.

1.4.5 Intrinsic Functions

Intrinsic functions have access to the task record and consequently, access
to the interpreter’s semantic stack, the number of arguments, and their
data types. The task record itself is of data type union ae.TASK-REC,
which has the equivalent typedef name ae.taok~ec. Note that arguments

to intrinsic functions do not undergo promotions of any sort before the call

and may be polymorphic in type, M may the return value of the intrinsic.

getrcco The intrinsic function getreco returns a pointer to the task
nxord of the interpreter executing the call:

●e-taakxec ‘getrec ()

The tymbol table must have been scanned and a definition for aeJask_rec

entered into se’s internal symbol tables in order to assign a type to the result
of a call to getreco.

symbolofo The symbolofo intrinsic function returns thn internal sym-
bol associated with the argument, The argument may be any data object,

that i~. any identifier ●xcept for a typedef name, otruct/union/enum tag, or
● goto label, The symbols used by ae h~ve data type struct aeSYMBOL,
which haa the equiva.ler.t typedrf name ae~ymbol.

ae~ymbol ●symbolof (<expremion> )

The bymhol table must havr been scanned and a definit h-m for ae.symbol
entered into se’s internal symho! tablm in order to assign R type to the result
of a call to symbolofo,

cmaio The cmaio intrinsir function (colt~mn major arm~ irldrr) indpxos
its ●rray ●rgument in column major ordrr, ak opposod to C’R row major

order, In addition, nonmro Iowrr dimension hounds arc tnkon into nrrount
WINIIIprrforlning tlI~ index Calrll]ations, wlwrcas el [e2] ih Pvalllnt ml hy IIIP

10



C interpreter in exactly the same manner as ●(el+e2).

<type> cmai (<array>, <expression>,... )

The arguments following the array argument must be integral in type, and
their number must not exceed the number of dimensions in the array. A
pointer is considered syntactically equivalent to an array with a lower di-
mension bound of O by cmaio. This routine was added mainly for extra
compatibility with compiled Fortran code; it is not possible to declare arrays
with a nonzero lower dimension bound in the interpreter without using the
typedec declaratory (See Subsection 1.4.4).

printo The printo intrinsic function pretty-prints each of its arguments
by traversing the object and its corresponding type descriptor:

void print ([< file>, ]<expression>,...)

If the first argument has type FILE ‘, the remaining arguments are printed

to it. Otherwise, all of the arguments are printed to ●tdout. Strings ap-

pearing in the argument list must have data type cher U and not char m

in order for a string to printed out instead of the pointer value.

1.4.6 Access to Local Compiler-De9ned Data Objects

As mentioned in Subsection 1,1. one may reference a global variable or rou.
tine declared with the static storage class by the idcntifiel

<filename> ’<ident>

where <filename> is the name of the compilation unit’s that the variable

or routine <ident> h declared in, All characters in <filename> that cannot

be used in a legal C identifier are replace4 with Inderscr)rm, Shm’ld the
name begin with a digit, an underscore is prepended to th{’ entire name,

If the user wishes to access such identifiers withrmt :lw p ~:fix <file-
name>’, he may insert the riynllmls for all of the routines and data objcc~n
dwlared local to the compilation unit <filename> intothr curronl Rmpo I)y

=Thc “amr of thp ~urcp file P* M ●n mrgllmrnl m th? rompilm, not ~11 inrludd

filr nam~ nor thr nnm~of Ihr remuliingot)jwt filr,

II



calling the function ae.load-atic_acopeo:le

void aeJoad -tat icmcope (ret, comp.unit )
se-task-c ●ret;
me~ymbol ●comp-unit;

whe~e

rec is the task record for the current invocation of the ae interpreter,

comp-unit is the symbol for the compilation unit .“91ename>.

For example, if the interpreter encounters the following code fragment when
invoked from the program described in Subsection 1.1,

se-load -tat ic -#cope (se-get rec (),
aekokup~ymbol (“test. c”, ae_tatic-flle_hash));

then the user may reference the variable -tatic-global saris the prefix
test-c’. ae-lookup-symbolo is described in Subsec*,ion 1.4.7,

The user may insert symbals far variables local to a routine (for a given
stack frame) by calling the library routine ae.load-dynamic~ copeo:

void aekad-dyn~cope (ret, routine, block, fp, ap)
●e-taek~c ●ret;
ae-ymbol *routine;
int block;
char *fp;
char ●Rp;

where

rec is the task record for the current invocation of tlw ac intmprct~r. Task

records are describwl in SulmQction 1.4.5.

rout ine is the symbol for t lw routine whose Ioral idont ifirvs aro Iming
loaded. A Fortrml main program usually hafi a corrcbponding idw~-
tifier called MAIN or MAIN_

10~l,Pn “-ln~ “@raiOnfi~rth~•PPllC~liOh●xwutiw [hml hnv- not h~r!n COlllPikl ●lllirF1.v

with oymbolicdebugging information (me Sm-liml 2), thr u~r may mnl)un.~ly lnn~rl thr

●ymbol~ [or ● library routine, or mlternntiwlycall it rmingth~ Id ●yIIIIIOlI~lde rrrtry (mw
Sukrtion 1,2,

12



block is the block number. To load the outermost block in routine, block
should be zero.

fp is the frame pointer for the stack frame being loaded.

ap is the argument pointer for the stack frame being loaded. On machines
where the addresses of arguments are given M an offset from the frame
pointer instead of the argument pointer (i.e., all machines that ae has
been ported to ao far j, one should pass the frame pointer as the last
two arguments to aeJoad.dyn~copeo.

Obvioudy, user must have some way of extracting the frune pointer and
argument pointer (If the argument pointer ie needed) for the stack frame
being loaded. This can be accomplished through a routine in an auxiliary
debugging library, source code instrumentation, or USEof a debugging utility
such es dbx or gdb.

1.4.7 Other Commonly Called Library Routines

in addition to calling library routines to control se’s scoping mechanism and
calling the various intrinsic functions, the user nmy find the following library
routines useful. A symbol table entry must exist for the routine LObe called:
this may be accomplished in any of three ways:

1. A symbol for tl~e routine is manually entered into at’s sylllbol tables.

as described in Subsection 1.3.

2. A version of ae that has it~elf been compiled with symbolic debugging
infoim? ion is used (aec Section 2), and the stab scanrmr is invoked to
create .ile symbol table entry for the routine.

3. The routine is called u~ing the Id symbol table entries created by [hc
stab scannm. SeP Subecction 1.’2,

A bric( description O( the moro commonly called library rrmtinos follow~,

ae_inho M’!IPII LIIC intcrprctcr or stab Ecanwr i~ involwd for tlm fir~t time,
tw’h internal ~tatica]ly allocated Ryrnhol tahhw and type dcscriptorh nro ini -
tialimd. Should the umr wish thi~ initialization to ocrur uitllrut invntiing
~ithm Ihc stab ~canner or lI!{* inlmprolm. IN*mmy cdl ae-inito:

void ae-init ()



aedookupmymbolo Meet symbol table ●ntries may be acceaaed through
the interpreter by calling the intrinsic function ae~ymbolofo as described
in Subjection 1.4.5. Thh mechaniom works only for identifier~ representing
data objects and program unit~, not for type names. Should the user wish to
accem the symbolic representation of a struct/union/enum tag or ● typedef

name, ae-ltikup~ymbo’{ ) may be called to search the appropriate table:

ae~ymbol ●ae.lookup~ymbol (name, table)
char ●name;
ae~ymbol~abie %ablq

where name JOthe name of the symbol, and table i~ the table to Much. A

pointer to the symbol is returned, or null if there ig no symbol in table by
the appropriate name. The followinfi oymbol tab]e6 are statically a’!ocated
by ae:

aa~tatic .tag-hnah containa struct/union/enum tagn.

me-tatic.flledta-h contains the 6ymbohI for source file6 and header files,

●e~tatic.location. hash contain6 the linker symbol table entries.

aemtatic-identhsh contains other Identifier 6ymbo]o, including typedef

names.

The task record for a given invocation of lhe interpreter contains the 6ymbol
table6 for dynan,ically-al: ocatcd identifiers; the mer 6hou]d examine thr
source code documentation for information regarding thrir arcem.

●e-move~ymbolo If IIICusw wislm to rmnovc an identifier from ar’R
intcrna,l symbol tal.deti. Iw may do so by calling ae.remove~ymbolo:

●e~ymbol ●aC*.remove~ymbol (symbol)
ae~ymbol %ymbo];

1.1



ae.fprhttf’() ●e.fprintfo in identical to the C library function fprintfo:

void %e-mrintf (file, fbrmat, . ..)
FILE ●file;
char ●tirmet;

except that se’s internal data objects may be pretty printed by specify.
ing different deecriptora in the format ctring. ln addition to the umm.1%d,
%f, %x, etc., %S may be specified to pretty print a symbol (the argument
should be oft ype ●e~ymbol ● ) and %T may be epecified to pretty print a
type descriptor (the argument ~hould be of type ●e.type ●). Other internal
data objects may be printed with different descriptors; the interested user
should consult the murce code documental ion.

1.4.S Error Recovery

Errore ●ncountered by the ae interpreter and stab ~canner fall into four

CkaSeb:

errors The interpreter ●ncountered ●rroneou~ C source code which caused
it to iscue a message. The interpreter continues uninterrupted. Such
●rrors often occur in declarations, where the idcnt ifier in question is
di~carded,

stint ●rrors The interpreter was unable !O parac a statement correctly. It
meets itself, and discards remaining input tokens until a semicolon

is ●ncountered. Syntax errorfiare 6tmt errcm. A dingnontic memagc ifi
then printd concerning the state of the parser. Diagnostic rnemagcii

may lM turned off by act ting th~ flag ●e~ilent to a nonzrro value.
SQIPSubswtion I .5.

block ●rrore The interpreter cncountrrcd an error which made it unahlo to
parrwthe r~maindcr of tlw current block corr~ctly, II rermttiitoolf and
discards input tokmm until an unmalrlwd “}- i6 mwmtntrwml. A hlorli

error may occur wlmn a formal paramclrr to tlw interprotwl roul ilw

i~ nnl declared, A diagnofitic mwmagc ih f htw printml wmrorning I IIP

stato of tlm parm.

n~hc,uld . lrfl ~,r=~l •l,l,F~r i~ [hr input kfnr? thr mmrlirohminll lr~l. illf’ludinR

mmicolonm,indiwardrd until the m~{rhln~ right hrwkt in pnwrunm.rrd.

15



fatal errc”s An internal deck for a condition necessary for the interpreter
to function properly has failed. Versions of Iibae.a, or a variant
thermf, that have been compiled with the -DAEDEBUG flag to
cc contain extensive checking for fatal errors. The default action when
a fatal error is encountered is the terminate program execution. If the
flag aeno.error~xit is set (See Subsection 1,5), then the interpreter
returns to its Aler instead of calling exito. The error memage is-
sued often displays fault y data structures in de~ad, and therefore can
be quite lengthy.

The error handling mechanism used to reset the interpreter deserves
special mention. The state of the pwser ic stored before each statement and
block. This state includes the indices into the \arious stacks used by the
LALR(l ) pareer. The grammar was carefully written to insure that should
such an error subsequently occur, the stacks would never have shrunk past
the point where its index was saved. Therefore, error recovery is a matter of
jumping back to the appropriate routine (uEing the UNIX ~etjm,p/longjmp
mechanism), restoring the etackF to their previous state by resetting their
indices, and discarding input tokens until a recogniz~ble construct is found
(a ; or an unmatched “}”),

If the flag ae-save~tmt~rr~mp is set, the interpreter will save its
current state in the global v%riable ●e-atmt~rrJmp2’ before each state-
ment is parsed. The user may uEe this to return control to the inter.
preter should ar error occur. If the interpreter is invoked in parallel and
SeJavemtmt*rrJmp is set, Lllen there exist~ a race condition for writing
aeJtmt.err Jmp.

1.4.9 Parallelism

The intvrproter can be i:ivokcd by concurrently executing t hrra(hi of control

and no corruption of 1he symbol tahlcs will occur, so long M certain restric-
tions art. observed. Tlw fir~t declaration for any statically allocated data
object dould not be encountered simultaneously by two or more threads,
Once the ~nitia] declaration for nn object hns bwm parmd, thv data ohjrct

may b~ rcfrrenced by concurrent il!vocatim,s of thv intcrprctcr, Swmdly, if
an incomplrt.r ~truct or union tylw i~ drclarrd. it filmuld not Iittor arh~ov(~
rcmlplctwmss througl! a typr ddinitiml parmd sill]ti!t amwusly hy two dilT(w-
ent thrc~dso
‘JldRlar~ ~ ~O.-mr~orJ:llr •ao_mml~*rrJlll]~

I(;



In other words, one must use the appropriate synchronization in order to
eliminate all possible race conditions for the creation symbol itself, although
nondeterminacy may still exht when modifying to the actual data object
the symbol represents. Once a data object has been declared, subsequent
declarations for it may occur in parallel (so long as they do not complete a
previously incomplete struct or union type).

The machine’s native synchronization mechanism may be used so long as
it accessed through library routines. On Alliant machines, synchronization
consists of calling the routines locko and unIocko.22 If the synchroniza-
tion mechanism is accessed through compiler intrinsic, the user may be able
to writo routines on top of them that perform the same function.

Simultaneous invocations of the interpreter may take the input text
stream from a string using Baeo. If the input stream comes from out-
side the process, special mechanismsz3 may be needed to keep the entire
process from blocking when only one invocation of the interpret is waiting
for input .24 This is discussed in Section 3. Once this is
possible to synchronize the different invocations of the
synchronization of their input streams,

1.s Flags

done, however, it is
interpreter through

several flags may be changed by the user in order to customize the behavior
of the interpreter, Storage for them is allocated in the ae library; the user
should declare them as extern in his own code.

se-silent (default O) Diagnostic mesbages are suppressed when aemilent is
nonzero.

●e.ntrp-conct ~ddresses (default O) This flag is usually set (to a nonzero
vsdue) when calling Fortran routines through the interpreter. This al-
lows the application of the address operator (&) to a constant, so that
it may be passed by reference without creating a temporary variable
to hold the constant’s value. For example, if ffunc is the name of

‘z Since they ●x.kt in ● Iibrmy not compiled with symbolic ctebu~ing inform~tion,
the routinesmunt be called with their corrmponding Id nymbol tabl~ ●ntricm-lock ●nd
.uulock, or dcclarstionofor them mmnudly irmertedin se’s int~rnd -Yml}ol t~bles M

that th~ ●? interprrt~r readnitn

nynIFmmrequirr that all i/o t~kr

inpul

plnrr



a Fort ran tmbroutine compiled with symbolic debugging information
that takes one argument of type integer, aemtabo has successfully
seamed the symbol t: le, and ae.ntrpxonst~ddr esses is set, then
then the code fragment

{ ffunc (&5); }

passes a constant with the value 5 as a reference parameter to ffunco.

aentrp-nonstd~d dresses (default 1) When this flag is set (nonzero),
then the address operator (&) is not ignored if it appears before an
array or function. This is useful when displaying type descriptors:

int a[lO];
{ ae-fprintf (ae_ef, “%7X, typeof (&a)); }

If aemt rpmonstd =ddressies is zero, then the & operator is ignored,
and a type descriptor for an array of ten integers is displayed. If the
flag is set, the & operator is applied to the array, and a type descriptor
for a pointer to an array of 10 integers is displayed.

ae-ntrp-no-errormxit (default O) If this flag is set, then the interpreter
or stab scanner will return to the caller instead of exiting when a fatal
error is encountered. See Subsection 1.4.8.

ae-print-brief.ty pet (default 1) When this flag is set, ae-fprintfo (See
Subsection 1.4 .7) prints type descriptors in less detail. When the flag
is zero. the often quite lengthy and unenlightening lists of struct/union
members and enum constants are displayed in full detail.

ae~ave~tmt_errJmp (default 0) If ae_saveAmt-errJmp is set, then
the interpreter will save a pointer to its current state in the global
variable ae-s~mt.errjmp before each statement is parsed, See Sub-
section 1.4.8.

1.6 Bugs

The argument to t.hc sizeof operator is fully evaluated. Not really a bug
since it i~ a non-standard construct, the argument 10 the typeof operator
iB also fully m’a]uatrd. This will change with the correction of thr bug
concerning the sizeof operalor.

lU



The size and exact configuration of a struct defined by the interpreter
may erroneously differ from the one defined by the host machine’s C com-
piler. One may avoid conflicts by declaring new objects using the type name
deihd when scanning the executable’s symbol table.

New data objects defined by the interpreter may not contain an initializer
in the declaration statement.

Although function prototypes (new to the ANSI standard) are accepted
by ths interpreter, the arguments are not type checked or properly promoted
when a function declared jn mch a manner is called. Instead, the default
promotions take place. See Section A7.3.2 in Kernighan & Ritchie [KR88],
On many machinea, no distinction is made in the executable’s symbol table
betwen functions declared with new style and old style parameter lists.

The stab scanner does not create location symbols corresponding to
linker symbols which are private to a compilation unit (See Subsection :.2).
Symbolic information for a routine or statically allocated variable private to
a compilation unit that haa not been compiled with symbolic debugging in-
formation must be manually entered using sae.declareo or fie-declareo.



2 IxMtallat ion

There are four baaic versions of the application executive library that can
be built. Each of these may be compiled entirely with symbolic debugging
information (i.e., using the -g option), or with only enough files compiled
with -g to inmre that the type information necessary for the interpreter to
operate correctly25 exists in the symbol table of the executable. For the
latter versions (that include the stab scanner), the stab scanner will operate
more quickly and use leas space, as there is less information to traaslate to

se’s symbol tables. These versions are appended with the suffix “_g.a”, as
opposed to just “La”.

libae.a or libae+a These libraries contain the application executive in its
entirety: the C interpreter, stab scanner, both of which rely on se’s
internaJ symbol tables.

libaentrp.a or libaeti~trp-gk Only the interpreter and internal symbol
tables are included in these versions. The stab scanner is omitted.

libae~tab.a or Iibaeatab.g.a Oniy the stab scanner and internal symbol
tables are included in these verbk)n6. The interpreter is omitted

libae~ym.a or libae~ym.g.a Only se’s symbol table management is in-
cluded in these versions - no interpreter or stab scanner.

It iE perfectly reasonable to ask the question, “If the linker only includes
the needed ob~t files from a library, why doeE one need four different
versions?w The motivation behind this wa5 portability. Since the J?ista
project [TCJ+91, JT91, TJC91a, TJC91h] relied on se’s internal symbol
tables, and although the stab scanner and interpreter can be invoked, they
were not imperative to the operation of Vista, the decision w’as made to
create a version of ae (libae~ym.n) that could be ported with the least
amount of time and eflort. This brings up the questinn, “Mrhy not split ae
into three different libraries, the interpreter, the Etab scanner, and a library

of routineti to access se’s internal symbol tables?” The task record passed
throughout the calling sequence ‘e differs for the interpre: ~r and the stab
——

*’The interpreter mrnmtfind the type detcriptoro for ae.type, ●c~yrntrol, ●nd
●e.task~ec in order to u,sign ● type to the result of a typeof ●xpremicm,to clwck
:he Lvpeof an ●rgument LOth~ typedec declaratory,or to amign ● type to the renultof a
call to aemymbo!of( ) or ae-getrcc ( ),

~6Actu~lY, . ~nlel LOthe twk reccd i~ PMLIe~I

y)



scanner, with each version being declared as the variant of a union. The
symbol ta51e management routin~s access fields common to both variants.
When compiling the library to include only the interpreter or the stab scan-
ner, we would not want to inrlude the variant used by the other. Hence
the declaration for union ae.TASKJLEC differs between Iibaentrp.a
and libaemtab.a (and Iihae.a and libae~ym.a). Linking with routines
from more than one version of the library results in multiple declarations
of union ae.’TASKAEC. The stab scanner will then encounter inconsis-
tent type information. See Subsection 1..2 for information on how the stab
scanner resolves inconsistent type inform:.tion.

To compile Ggiven version of the application executive library for a given
artitecture, the installer should cd to the top level ae source directory and
enter the command:

make -f Makeflle. tarch> <lib>

where

arch is one of

SPARC A Spare workstation, made by Sun Microsystems. Use thh

version with the supplied C compiler.

SPARC-GCC A Spareworkstation. Use this version with the GNU
C compiler gee.

ALLIANT_FX An Alliant FX/1, Alliant l’X/8, or Alliant FX/60, If
porting to a new architecture. one may wish to start by using this
version, as is the most compati Me with the portable c compiier
pee.

ALLIANTJX2800 An Alliant FX/2800 series computer.

lib is one of the aforementioned library verBions.

Building the interpreter or stab scanner requires the use of the parser

generator bison [DS88], and the lexical analyzer for the interpreter is created
using the Fez utility [Law90], version 1.3 or later. Earlier versions of flex
are incompatible, as the application executive contain6 its own version of
the ukekfon lexical analyzer “flex.skel”. See the instructions for using the
-S option to flex and the w source code for more information.

21



3 Debugger Configurations

The application executive itself cannot be considered a debugger per se;
more functionality is needed, namely the ability to show a stack trace, set
breakpoints, and trap exceptions. These features are quite machine-specific,
whereas ae is more portable, at leaat among UNIX/C platforms.

3.1 Sequential Debugger

Since ae exists as a library, in the simplest configurations the debugger exists
ent,ireiy within the same prOC~6andaddres6 space as the application.

Writing a signal handler is a relatively straightforward process. An ini-
tialization procedure tells the operating nystem which routines, or signal
hamdlers, to call when certain exception6 occur. The application executes,
and for the nake of argument, assume that an exception occurs. Control is
transferred back to the operating system, which directly invokes the signal
handler (either using the current run time stack or a special signal stack. )
The signal handler needs to do little more than print an error message con-
cerning the nature of the error (‘bus errorw or ‘arithmetic exception”, for
instance), and invoke the ae interpreter. The user may then interactively ex-

-mine and modify the state of t}.? program in the usual sense of a breakpoint
debugger.

Doing this often iuvolv- calling several compiled debugging routines,

the first of which is usually a stack trace utility. -q stack trace must be
able to follow the chain of frame pointers. and print the frame pointer (fp),
argument pointer (ap), and the return address / program counter (pc) for
●at}. frame. se’s internal symbol tables must then be searched for the routine

that contains the executable code at a given address. This information

should be displayed in a readable f~rmat that includes the blocli number in

question for each routine.

Once the user has determined where ~,nthe course of execution the tYx-
ception occurred, he will usu AHywish to examine various data objmt~ to
gain more information regarding the nature of the error. If th”se data ob-
jects exist Iocaily to a routine, he may use the stack trace infm mation to

load their symbolic representation into W’S internal symbol tatdm by rail-
ing aedoad.dyn~copeo (s* Suhsertion 1.4,7), Alternatively, this prrmss
can h~ automated by integrating it with tlw stack trace utility.

The initialization routine, mig”nmlhandler(s), and debugging routinm may

mist in a library compiled with the usrr”~ rode along with tlw ar library.



The only modification necessary to the ucer’s code is to call an initialization
routine which saws the signal handlers and scans the symbol table of the
executable using ae~tab( ).

Figure 1 shows the stack configuration after an exception has occurred
and the ae interpreter invoked. Before each statement is parsed, the in-
terpreter saves its current state in the global variable ae_atmt_errJmp.27
Should am exception occur in the interpreter while evaluating an expression
or in debugging routines called by the interpreter, the signal handler can de-
termine that the interpreter was already invoked and transfer control back
to it.

Should the user wish to set breakpoints, he may either do so by call-
ing the signal han~ler directly in his code before compilation, or dynamic
breakpoints may be placed within the instruction stream at run time. The
latter requires that the executable code be placed in a writabie addreas

bpace. This can be accomplished with command line options to !he UNIX
linker, Id. The instructions at the appropriate address are saved, and then

overvrritten2s with an opcode which raises a signal when executed. A break-
point is then handled in the same manner as any other exception. When
the user wishes to return from the breakpoint, the opcodes at the correct
addrew are rectored, and we exit the signal handler. When the signal ban.
dler returns, it restores the registers necessary to continue execution from
that point.

This procedure, of course, clears the breakpoint, In order to leave a
breakpoint in ●fiect, ●nether breakpoint may bc ~et at the next instruction.
This breakpoint automatically resets the first breakpoint and clears itself in
the process of returning.

Interesting variants of this implementation include overwriting the exe-
cutable code with jump statements to the signal handler, as opponed to an

opcode that raises an exception, thereby avoiding operating systcm intm-
vention, To return from a breakpoint without clearing it, one mny append
the stored opcode with a jump statement back to the instruction following
the breakpoint, jump to the stored operands (they mumt cxint in a segrrlen~
with execute permission ). execute them. then jump back to tlw inntrurtim

following the breakpoint. This procedure is highly d~pond~nt upon opcmlr
sizes, but has the advantage that it dof% not inhihit parallelism; th~ PXP.

23



Text

stream

Stack

Growth

Compiled

Debugging

Routinea

AE

Interpreter

Signal

Handler

Application

‘-
I
I

Prowmor

I
I
I

Vdy.



cutable memory image ig not modified in the process of returning from the

breakpoint.

S.2 Parallel Shared Memory Debugger

In order to debug a parallel program on a fully shared memory machine such
at the Alliant FX/8, very few modifications are required to the ~equentia.1
version.

What is required i~ operhting system support. When an exception oc-
curs, it is only necessary that one processor enter the signal handler and
interpreter - long as it has access to the stack frames of the other concur-

rently executing processors. The operating system must store the values of

the registers in each processor, and allow the debugger access to tltebe. It
should inform us which processor actually caused the exception; thi6 may or
may not be the processor that acfually executes the ~ignal handler. If the
threads are multitaslied, that is, an arbitrary number of threads of control
are executed by ●nd switched between the ●vailable processors, the operat-

ing system should also allow access to the ~tored values of the rcgi~tcrs for
the suspended threads.

After entering the interpreter. th~ usicr will typically call the stack trace

routine. The stack trace must show thr status of all thrcadh of control.

The uw may then examine data objects local to a giwm stack frame,
for any thread of control, by calling the routine aeJoad.dyn~cope( )
to load the symbols for the given fram~ into se’s internal Rymhol tables,

(aeload.dyn~copeo is described in Subsection 1.4.7. ) Even if the ~tack
franw in question was crcatml by a diflcrcnt processor from that currently
ex~cuting the interprctm, it still exi~t~ in a memory region nccwmild~ by tlw
interprptcr, w there is no mwd to usr nmrr than one prorr.wor WIIPIIdohug.

ging, If the throarl~ are multit~kml, tho olwrating Ryntrm should RIIOW the

usm to cllangr tho nclwdu]ing mtatIM of a given thr~ad,

S.3 Parallel Private Stack Memory Debugg~r



Compiled

Debugging

Routines

AE

Interpreter

Signal

Handler

Application

t
I
1
I

Stack

Growth

- Text
Stream

uApplication

I
~.. -. .-J I

1
I
I
I
I

.; Processor 2

I ,
I
I
I

Vdy,F’igurr 2:
t}w nignal



the others into executing the int~rpreter by modifying their stored ~tates,
causing all processors to jump to the handler immediately after the single
proceaaor executing it returns and parallel execution resumes.

An alternative to tl.is scheme is to have a single processor execute the
interpreter. The others execute a data access mechanism communicating
with the interpreter, copying data objects to a region of memory where
the interpreter may acce6s it, The application executive does not currently
eupport this.

The input stream arbitration must not allow the entire process to block
unless all invocations of the interpreter are currently waiting on input. This
would normally dictate that the arbi~ration -xist within the process itself,
Figure 3 6hows the debugger configur~tion for a parallel machine where
processors are denied access to each other’o stacks, This architecture inhibits
true multi tding (without extensive copying of stack memory). Here, there
ueually exists a one-to-one correspondence between the processors and stacks

for a given process.



uCompiled

Debugging

Routinen

AE <
interpreter

Signal

Handler

Application

t
I
1
I

uProce680r 1

I
I
I

+

t

.

stack
Growth

Text

Stream

1
Multiplexing

Arl]itrntion I

Compiled

Debugging

Routines

All

Interpreter

Signal

Handler

Application

t
I
1
1

Proct=ssor 2 I
I
I
I

, . . . . . . . ..~



4 Conclusion

The application executive is a versatile tool that allows the user to control

the execution of his program at run-time without recompilation; because this
is a major requirement for a debugger, it also forms the basis for a number
of debugging configurations for widely varying computer architectures, both
sequential and parallel,

The application executive is u.eful in any context. where a general locus
of control is desird within an executing program, especially when the user
can be assumed knowledgeable of the C language and possibly the UNIX

operating system. The use of ae greatly facilitated the debugging of the
l~ista project, in addition to being an integral part of it,

Unleaa otherwise noted, all features of ae described in Section 1 have
been implemented and tested on an Alliant FX/2800; should any of them
fail to perform as described, it is considered a bug.

Thanks to AlIan Tuchman for his input during the a~t-~’loprnent of tho
application executive, for critiquing this document, and last but not least,
for coining the name ‘application executive”’.



[DS88]

[JT91]

[KR88]

[Law90]

[Lin90]

[Sta89a]

[Sta89b]

Charles Donnelly and Richard M. Stallman. Bison. Free Software
Foundation, October 1988,

David Jablonowfiki and AlIan Tuchman. Vista users manual.
Technical report, Univ. of Illinois at Urbana-Champaign, Cen-
ter for Superco reputing Res. & Dev., May 1991. CSRD Report
No. lg68.

Brian W. Kernighan and Dennis hl. Ritchie. Tht C Pqmmming
Language. Prentice Halll second edition, 1988.

Lawrence Ecrkeiey Laboratory and Vern Pa.xson, jlcz, May 1990.

Mark A. Linton. The Evolution of Dim. In (~seniz Summer
Conjewnce Proceedings, pages 211-220, June 1990.

Richard M. Stallmtin. CDB Afanual. Free Software Foundation,
Octobcr 1989.

Ricl,ard M. Stallman. Using and Porfing G,$’tr CC’, Free Software
Foundation, April 1989.

ITCJ+91] Allan Tuchman, George C’yknmko. David Jaldonowski, Dri
an D1iss, and Sanjay SIlarma, Vista: A systcm for remote data

visualization. Presented af (he Fiftl~ SIA.V C’on/emnce on Par.
allel Pruccs~ing jor Scientific Computing, Houston, T.Y, hlarch
2$27, 1991.

[TJC91~] AlIan Tuchman, Dal-id Jablonow~ki, and Gorgo Cybwko, A
sytitmmfor remote data visualization. Tmhnical report, [!niv, of
Illinois at l’rbana-Champaign Ccntm for Supercom puting l{mi,
& Dcv,. .June 1!)!)1. CSI{I) Rq}ort No. 10fi7,

[TJ(’91 b] Allan ‘1’ucliman, David JaldonowrAi, and Georgv C’ylImlw. Run-
tinw visllalizat ion of progrwm data. 7“0appmr in fhr I’mcmdirlgs
oj I ‘isllt~li:atir)ll ‘9/, Sin Diegol C’,4,Octotmr 22-25, 19!)1.

[lTniH7a] (ll,i~,trkit y of (’alif(,rllia, l](,rk(,lity, ~g~’,4,:) l,K~ ~i(li(ioll, Jlllll. ]~)~~,

in l.llix l.hw’fi hl:inual 11(’fwrllrr (;uidu,

[[’ni~71)] l’r”,wrsily of (’filifmli~. I)vIIIwII*.v,/)11.Y,4,J lm~l odi[i~)ll, JIIIIII
l!t~i, ill IIllix l:w.r’h hlanual I{ckr(’nrr (;ui(lo.

:10



Here is my list of features for my dream debugger of the future:

Fast conditions] breakpoints and fast memory watch points.

Bounds checking.

A memory map in a user frimdly forma~

2 and 3d plots of multidimensional data sbnply e.g. plot A

reverse execution

Why is x=3? Dynamic backw~rd chaining of dependence.

Dynamic linking of new procedures (useful Jndebugging long executions).

A memory reference trace of shared variables.

A trace of message passing activity (In nice graphic format of course:).

Structured display of user data (Ilsts et~ =go SGI).

Race detection.

Dynamic display of data (I.e. mntinuously updated).

Performance displays.

Dctcrmbdstlc repiay.

Multlprocess event detection (e.g. stop when pl Is at x and p2 Isat y).

Source level dcbugglng of optlmlzed/paraIleUzed code.

Algorithm level debugging (e.g. better abmmctlon to highm ICVCIS).

I)cbug aids for numcrlcal problems (e.g. Instablllty duc to Ilmltcd precision),

Nungc checking of nrbltm~ values (not Just array Indicics).

Cmnparc Intmnedlate stutes of ncw and old vcrslons of Hprogrun] during execution.



3.1 Automated Analysis

In parallel programs, the most canrnon artd complex cmors involve the order of events,
Behavioml abstraction simplifies matters. It is intended to aid the user in reasoning about
relationships with rcspm to time. The most fundamental of these relationships is
happened-l@orc [28] and is denoted by an arrow (->).

Figure 3 shows a partialorder diagram for a twqrcxess application. The arc !xtwccn
the two timclks corresponds to a message transmission. Events A and C represent the
sending and receiving 0? the message, respectively. Since ● message must k sent before
it can be rcccivul, event A must have occurred before event C. 1%.isfact can be
represented as A + C, or “A happened-before C.” This relationship also exists for each
pair of events on the sznc ti.meline. Thus, A -> B and C -> D. Because the happcnul-
before relationship is uansitive, we can ak say that A -> D, However, events B and D
are on separate timclincs with no arcs between them. Since no happened-kfore relation
mists between these events, wc simply say they arc unordcrd, or concurrent. This

approach results in an event sequence that is said to be partially ordered because not all
event pairs arc ordered.

“de”w---
Nods 1

CD

Figure 3, Pattial Oder Dia~m

An alternative approach used by many behavioral abstraction systems is to order each
pair of events. In a system basal on total, or linear, ordering, the timcl.ine in figm 3
might tK destibd as A->B-K->D. Note that this implies a relationship between events

B and D that does not actually exist.

A bhavicmd abstraction system bawd on partial onkring yields only those relationships
that arc actually obscrvul. Funhermom, dusing the recording phase, the execution replay
system extracts information that is essentially a partial order diagram, and can be used
di.rcctly to guide analysis..

To date, the most compkw and pmcticalcollection of partial order operators m those
developed by Hough [22]. These arc prece&~ (->), prcce&s closure (*), parallels (II),
and parallels closure (II*). kcdes (->) is similas to the happened-before relation.
Prccaks closure (*) is used to describe any number of consecutive instances of an evcn[,

7



Parallels (11)is similar to the comment relation. Parallels closure (P) is wed to describe
any number of uncndcrul instamcs of an event.

These temporal operatorsarc used to model program behaviors. For example, imagine a
distributed simulation that advances lock seep in ● ~ncs of rounds. Imagine, also, that
each roundconsists of five phases. Four cmcspond to communication with ncmh,south,
cast, and west neighbors, while the fifth involves the computation for that round, Figure
4 shows this sequence ●s dcsmilmd using Hough’s opcratom, Abstract events A, B, C,
W D have been defined previously as the four communication events, and E as the
computation step. ?he parallels closure operator describes any num~r of events in
parallel. In figure 4, [AI I● J denotes any number of northbound IIEssage exchanges.
Consequently, the abstract event X is a rsxxlel of the cntin execution round.

I X is (AII*) -> (BI I*) -> (C II*) -> (D II*] -> {E I[*!
Y is X*

Figure 4. Execution History (2msisnng of a Series of Five-Phase Rounds

Using the rules in figure 4, the debugging environmentcan now Ss told to trackeach X,
or roundof execution, for us. Alternatively, the debugger can be used toverify assertions
about program behavior. With this ●pproach,the Prograrm,a first uses modeling to
define a set of conditions that must hold throughout the execution. NexL the program is
m smd monitored by the debugger. Any violations of the assertions uigger prcdefincd
actions such as breakpoints or notifications. For example, the entire simulation, Y, is
dcfind as a series of rounds in figure 4. This permits any discrepancy bctwccn the
expected behavior Y and the actual execution to be detected ●mrnatically.

To Hough’s tempt] opcra~ PARADIGM adds the concept of a sliding in~ervuf. This
mechanism enables the analysis facilities to obtain andreasonabout pctiorrnancc-related
information. A sliding intend’s leading dge always coincideswith the cum point in
the execution. Its trailing edge fallssomenumber of events behind. Since abstract events
may correspond to phases, a even round~ a sliding intcml can spnn a SU;wtrttial
sample of the execution.

As an example of the usc of sliding intcmals, consider the distribute simulation once
●gain, ~d imagine that load bahncing is being addd l%is requires that the simulation
fust be broken into gmnulcs. Each of thesehostssomenumber of simulation objcvts.
The granules mrcthen distributed m that ~ch processor trtamgcs roughly the same
numlxr of simulation objects. An imbalance occurs if simulation objects Iuter migrate
and Icave the granules on some prorcssors dcplcud, while crowding others, BBIMCCcan
be restored by swapping granules w that each processor again manages roughly the same
number of simulation objects.

8



To tune tltc simulation, the programmer must weigh the degree of balance achievwl
against the overhead incunal. The key pamrncter is @mule si=. Dccrcasing granularity
improves load balance, but also results in more message exchanges durhg each round.
Determining the appropriategranule sixc may require careful obsctwation over scvctal
rum Sliding intervals can k used to facilitate this type of performance assessment.

To dctemmc“ optimum granule size, M user must observe troth tic uniftity of tie

~cct disuibution and the num~ of messages exchanged. A simple measure of
unifcwmitycan bc obtained by camparing the numk of simulation objects resident on
h last and most populous proccssot’s. bad balancing overhead is directly indicatedby
messagevolume During any singk round of execution, however, either measure may bc
misleading. W example, an object tcdistribution caum an imrmdiate spike in message
Mlc but may seduce overall cxocution time. ldcally, both rneasurcmcnts should lx
taken over the entire execution. Unfortunately, this could bc a considerable length of
time. Furtkrnm, post-motum ●nalysis prdudes interactive study.

Sliding intcsvals pcnnit intmctive analysis while mitigating the inacauacy of
instantaneous uwasurcrncnts. In the load balancing example, a sliding intcm.1 maybe
defined over some numb of execution rounds. The distribution delta and message
overhead would bc averaged across the entire interval. As the execution progresses, the
intervalslides fonvard in time. During any interval, an exceptionally large average could
rnggcr a prodcfincd action, such as a breakpoint. lle user could then study the
conditions thal prompted the action. The prognmmtcr may control the accumcy and
rcsponsivcncss obtainedenflicting goals that arc detcrrnincd by intcnml duration.
Imcasing interval length incrcascsresponse time, but rduccs the impact of anomalous
mcasurwrmts.

3.2 Automated Control

During replay, program events arc rcprcscntcd as tuplcs. Changes made to the
parameters of a tuple arc rcflcctcd in the cmesponding event. For example, consider the
event tuplc shown in figure 5, which represents a message send event. The tuplc’s class
is comm ad its type is send. An arbitrarily long list of atuibutc/value pairs may follow
these fields. In the figure, the fist attibute, ~srinution, identifies the target of the
message as process O on node 31. TIMnext pair gives the message type. Finally, the
nssagc itself appears. (ln the figure, NUU indicates a =rcAytc message.) By
changing dw message atibutc, a different message may lx substituted. Similarly, a ncw
target may k spccificd by modifying the &stination field.

I (cotmn send destination 31:0 typa 4 meow! NULL)
I

Figure S, A Send Event



During a lucakpoin~ the user may alter or even delete any event manually. Alternatively,
the &tdysis system can modify and delete events on the fly. This ability pemits
extensive experimentation with che execution without the need for raompilation.

33 Ref14ve QuericJ

thr.ring execution, behavimal abstraction can be used to uack the progress of an
●pplication ●utomatically, to monitor its performance, and to detect any deviations from

its e-ted behavior. Often, however, a progmrnmerwill need to interrogate the
environment directly. For cxampk,following a bre-ak@tt, he may query the system to
dctennine the wquence of events that predcd an enonaus behavior. This type of
quety is said to k r~ective, since it refers to past events.

Reflective queries are made in the same notation as that usd for behavioral absaaction
rules. For example, the roles in figure 4 define the cxpectd behavior of a hypothetical
simulation. Resented as a query, they [hould match all the past behavior of the
execution. If only a partial match is made, the point of deviation may indicate the origin
of an error. If the match fails entirely, fun-her queries can be used to unmask the error. In
this way, a programmer can test assertions a-bouthis application. FaiM assenions
indicale dismepancics between expected and actual behavior.

3.4 Cellular Displays

‘he analysis system can be used to tive simple state-based displays.
matrix, or plane, of celk. Each ccl] represents a program componcnL

These consist of a
~e color, shade,

texture, or icon of a given cell corresponds to some aspect of that component’s state,
Figure 6 presents a display thatmight result horn the hypothetical simulation discussul
prcvioudy. Here each cell reprwnts a simulation process. Shading is used to indicate
the number of simulation objects mmagd by a process. Darker shades indicate larger
numbers of simulation objects, B, .onsulnng the display, “Je progmrn.mer can determine
immediately that the object distribution is nonuniform. In addition, he can identify
particularly abcmnt processes for futther study. In experiments involving similar
displays, test subjects succeedai in identifying patterns ii=thousands of picccsof multi-
dimensional data [29].

P~lGM will offer predcfin~ views of system state such as message uaffic, memor~
consumption, and idle time. ‘he progmnrner may also use the analysis system to drive
application-specific displays. Lastly, cellular displays may be ustxl in conjunction with
reflective queries. In this case, a display’s cells are highlighted if the components they
reprewnt satisfy the conditions of a query.

10



Figure 6. Cellular Display of~ Balance

4. REPLAYANALYSIS

Execution replay and behavioral absmaction fit togehr naturally and have been
combind previously. LcBlanc and Mellor-CIUmmey [Xl] dew%bc an environment that
offersboth replay and LISP-based analysis of the execution history. In their system,
replay can be used to drive conventional debugging environments. Analysis, however, is
cb~ out scpatattly from replay, and so cannot be used to dynamically control and alter
execution.

Replay and analysis are C1OSCIYcoupled in the system describedbyElshoff[13].
Although spific to the Amoeba operating syfitcm, this environment supports execution
replay, behavioral abstraction, and source-level debugging. Monitoring information is
collected by an instmmentcd libnary and sent to analysis tasks. This requires debugger
md application messages to be interkavcd. Consequently, the environment can pemrb
the execution, though not beyond the possibilities permitted within the partial ordering.
In addition, monitoring data is maintained in the application’s address space, where it can
be moclifiul by a faulty program, Finally, the environment cannot be used with
conventional debuggers.

h PANIGM, the combination of execution replay ●nd behavioral abstraction is
[crmcd repluy anufysis. PAIMDIGM offers four principle extensions over previous

works. ‘llese arc: (1) examination, analysis, and modification of events that have yet to
occur; (2) cooperative analytical suategies,including conventional debugging, graphic
sum mapping, and behavioml abstraction; (3) experimentation with event ordering in

. suspect progmrn fragments; and (4) communication-rdatul pcrfotmance nwasurement.
Machof these capabilities is discussed in the following sections.

11



4.1 Future Tcnac Query

-ventional source-kvd debuggers provide considerable in.fosmation about the ~SCnL
This incl~dcs such detailed informaaon as the values of program variables and processor
registers, and tlte currently executing statement in the application. Tlmugh less detailed,
information abut the past is also provided in the form ofs stack tiamc history.
However, no information abut the future is available. 71w programmer must either infer
future events or waif for them to b realized.

PARADIGM differs fmm conventional environments in its knowledge of future
synchronhtion events. This information is capturedduring therecordingphaseand is
made available ●! replay. The progmmtncris thus able to inspect and even modify future
synchroni=timt events. For example, following a tmakpokt,a progmmrncrcanexamine
the next messages to b seceivcd. If he suspects that an error arises from their particular
ordering, he may swap or even delete future message events before resuming execution.

4.2 Mixed Mode Debugging

Both PAIUDIGM’S replay and analysis capabilities arc transparently extended to
conventional wurdevcl debuggers. ‘Ile rcplay facilities relieve titional debuggers
of the problems of she pm~ effect and intermittentcmors. Similarly, bchavioxal
abstractioncan be usal to augment conventional environments with event-based
breakpoints. 71is analysis can also be used to drive the cellular display during execution
or to suppm reflective queries following a conventional kakpoint.

Forexsmple, a progranncr may usc a convenaonal debugger to set a breakpoint on en~
imo a panicular procahrc. Following the breakpoint, he may consult cellular displays to
obtain a global picture of the system state. These may identify particular components
with suspect stmes. Next, he may make reflective qucsics of the analysis system to
dctcfmincthesequenceof events that precededthe breakpoint, lie may also qucxy the
system for future events, possibly alwring them. Finally, he can resume execution tim
the conventional debugger.

PAWDIGM permits the pro~ammcr to usc familiar, conventional debuggers nmrc
effectively. Ahcrrmtively, he may employ PARADIGM’s analysis facilities alone.
However, these two approaches can also be used coopcrativcly to achieve capabilities
beyond either technique mlonc.

4,3 User=Dhcted !bquenclng

In parallel programs, many mm arc dependent on the sequence of events. PAIWDIGM
enables the progranuncrto investigatethe effectsof alternative sequencing.
bnsqucntly, he may eliminate crnms that have been obscmd or unmask those that
have not.

User-dirmcd sequencing requires that the program f~st be insbumcnwd with labels
visible to tie debugger, Each of thesescwc as a possible synchronization point. The

12



.

dehggcr can then lK used to enforce mutual exclusion, barxicrs, or synchronization based
on constraints provided by the user.

4.4 PerformanceMeasurement

PARADIGM’s analysis facilities permit nusurcmcnt of elapsed physical tinx between
any pairof synchronization events. For exsrnplq a progranumr may detcnnine the
overall time squired to send ● rcqucsLawait a consequent remote computation, and
-ve a reply. He rMy also track and time similar actions included in the remote
computation.

.,

These nm-asurcmcnts am based on timcsuunps made during he recording phase.
(lmsquently, hey am immune to the time dilation and execution skew eff~ts caused
duringreplay.

5. STATUS

To date, much of the event interface and part of the monitor agent have been
implemented on the Intel iPSC/2 muh.icomputcr. These consist of a ‘~t of modifications
woven into the operating system kernel that runs on each node of the iPSC/2. Cumcntly,
a wide variety of programs can be replayed. The analysis facilities arc ccnnalizcd,
mnning on the iPSC/2’s front end, and arc still being developed. ‘flIus far, they have
been useful in prnviding performance measurements. The cellular display has not yet
been implemented.

The kernel modifications result intluw new operating system components. These arc the
event interface, monitor agent, and double agcnL The-relationship between these
components is shown in figure 7.

User User User User
Process Process Process Process

Event Interface
To/from other ~ *
monitor agents Empty

monitor Double
To/from debug Agent Agent Kernel
utl~ity Process Proces9

User Space

KernelSDace

Figure 7. Relationship Betwem Nale Level Debugging Components

13



Encapsulated in the event interface is all of the debugging environment’s machine
dependent code. During the rcccmclingphase, the event intake captures events which
am ~ of *C partial order diagram nadcd for replay. This amounts to a small subset of
events involving communication, and the impact per event is kept sufficiently low. For
example, on the iPSQ2, the minimum amc required to satisfy a receive request is 308
mboseconds. Tlw tinw required to timcstarnp a receive event is 21 microseconds. A
further 18 mimosccon& arc required to exuact the event ~primctcrs and complete a
-w retard.

Event information is coktcxl in a kernel buffer for laterrecovery, should debugging be
required. bnsidcrably less perturbation results from writing to a buffer than to a file.
However, the buffer’s limited sb constrains the number of events, and hence the length
of execution, which can be rccordod.

The most communication intensive execution yet replayed involved an average of 382
rccordcdevents per node per second. At this rate, event buffer space is exhausted after
rccmling approximately 8 minutes and 32 seconds of execution. A method of extending
recording time is presented in section 6.

The event interface cannot be rnanipulatcddirectly. A kernel-residentprocess called the
double agent scncs as an intcnncdiary. As shown in figure 8, the double agent can be
Comrnandd !i’oma debug utility locatai anywhere on the network. From his remote
session, a user can extract event buffer data using the save comman d.

Network

1

Multlcomputer

1Kernel
Processes

Figure 8. New Host-side and Node-side Software

14



As an example of replay, consider the sample programin figures 9 and 10. Figure 9
shows one of two processes comprising a simple test program. This “sender” process is
loaded on naies 1,2, and 3 and results in three messages immediately being dispatched
to node O. A ‘Ycccivti’ process, shown in figure 10, is then loaded on node O. The
PI’0~ COHIPICWSwhen he mcekT displays thc micr in which it COIISUmCS thc tIUCC
messages.

maino
I

char buffer [lOl:

csend(O, buffer~ sizwf (buffer), O, O) ;

1

Figure 9. TIMSender Process

main ()

(
char buffer [lO] ;
int i;

for (i-o; i<2; i++) (

crecv (-1, buffer~ sizoof (buffer) ) ;
printf [“Received nmssage from node td\n”, infonode () ) ;

1
)

Figure 10. The Receiver Pmccss

Upon completion of the program, the debug utility is usal to cwact a rrunscript of
critical events from the double agent on each node. The sccordal critical events providr
all the necessary infcnmation to reproduce the execution. The mmcripts contain only
individual event histories. They must be correlated to become the schedules which guide
bmh execution replay and analysis. Schedule generation is performed by a mkschcd
utility which is transparently invoked by the debug utility’s save cosnmak

The following arc excerpts from a replay session. Here the mcr allocates four nodes,
loads ● sender process on three rides, midthen loads a receiver process on a fourth.



SW getcube
getcube successful: cube type 4m16n0 allocated
SRK> load 1 sender
SRW load 2 sender
SRJ4> load 3 sender
SW load O receiver
SW Meaaage from node 1
Message from no* 2
l&ssage from node 3

Tlwrcccivcrprocess displays thesequence inwhich thethrccscndcr mcssagesarc
consumed. l“hisisth esamcastheloadin gordcr: naie Ofollowod bynodesland2.
Next, uanscripts arc recovered and replay schedules generated using the debug utility.

SRM> debug save achedl
Node O- Recovering transcript.
Node 1- Recovering transcript.
Node 2- Recovering transcript.
Node 3- Recovering transcript.

Building schedules
4 transcripts of 120 Kbytes

Node O
W-=---

(getcube, physnode O, @248649)
(load, pid O, @279339)
(crecv, node 2, aeq 18, *O, @280240->280240)
fcsendrecv, r_aeq 182, peer 256, a_aeq 25, #l, Q280240->280244)
(crecv, node 4, aeq 11, #4, Q2EI0278->280278)
(csendrecv, r-seq 185, peer 259, a_seq 28, +5, Q2H0279->280302)
(crecv, node 6, aeq 11, 46, Q280303->280303)
(csendrecv, r_seq 186, peer 259, a-mq 29, 47, Q280303->2EI0326)
(terminate, pid O, @200363)

Node 1
W-==--
(getcube, physnode 2, 02488581
(load, pid O, @265927)
(csend, aeq 1S, +0, Q2672111
(ttirminate, pid O, Q267259)

Node 2
9mm-m-
(getcube, physnode 4, @248801)
(load, pid O, Q269944)
(csend, aeq 11, 40, 0270028J
(terminate, pid O, Q270195)

16



Node 3
—n
(getcube, phymode 6, 024 SB621
(load, pid O, @274819)
(csend, eeq 11, #0, @274905)
(tednato, pid 0, 0275060)

-------------------------- ------------------------ ----------------------

No unused nodes
No unterrnhated processes
No incomplete receives . .

Built 4 schedules
SRW

Having cxbactcd a transcriptfrom each node, debug transparentlyinvokes mkschcd. At
this tirm, ths recovered transcriptsarcdisplayed and massaged into replay and analysis
schedules. To minimize perturbation,no event processing occun during the recording
phase. As a result, transcript times arc absolute, and both node and sequence numbers arc
physical VSIU= The necessary translation takes place in mkschcd dting schd.de
generation.

The fmt event in a transcript is always a getahe record,ccmcsponding to the allocation
of a fm naie cube. This does not constitute an event, since the associated information is
noi required for execution replay. Consequently, no event number is assigned. Of
interest to mkschcd arc the getcuhe enuy’s two attributes, physnode and @(at).
Physnode has as its value the physical number of the lcml ncde. Thus, mkschd can
demrmhw that the mules logically numbered Othrough 3 comcspond to the physical
numbers O,2,4, and 6. The second attribute of getcub, q marks the creation time of
the allocation in milliseconds. Mkschcd subtracts this h all other absolute amestamps
to yield relative timcstamps.

Each transaipt has a subsequent lomd entry. As with getcuhe, loadS arc not given event

status, but do provide imponant information. The load record’s atrnbutes identify the
proms ID and creation time of a newly loackl process.

In the uanscripts for nodes 1 through 3, csend records correspond to the sole statement in

the sender process. The atuibutcs identify the message sequence number and
transmission time. As an occurrence of c8end is an evcn~ an event number (preceded by
W’) is also given.

A final tennimte entry appears in the transcript of eve~ node which runs a process that
. exits, either ncm.nallyor abncmmdly. The rccotd’s two attributes identify and timestamp

the terminating process.

?kde O’s tmnscript rcccmls the actions of the receiver process. The fmt crecv enuy

comcsponds to the meipt of node 1‘s message. The entry’s attributes give the event
number along with the sender’s node and sequence numbers. Unlike the c send entry,

17



crecv’s Qattxibutcis an intend. The interval’s first value&notes the time at which the
crecv system call WMmade. ~ -nd value marks the time at which the crecv
COnSUti the lBCSUgC and completed. Following the csend k a csendrecv event. ~is
is generated as ● I’csuhof the receiver’s print f ( ) statement. The next two
csendcaandrecv pairs carcspond to the receipt of de 2 and 3’s messages on
mbsqent passes through the receiver pmcss’ Imp. Ftil:~, the receiver process exits,
resulting in a mrrdllate entry.

~c debug utility displays the message %U~lt x schedules” once all replay and
analysis sckdules have beenwritten. ‘Ike am saved to a file narrwl by the save
command’s optional argument. ‘flw execution can sukquentlv be replayed using the
debug Utility:

SW> debug replay schedl
achedl . rs . I : 4 schedules of 128 Kbyte8
Srw> load 2 sender
SW> load 1 sender
SW> load 3 sender
SW> load O receiver
SW> Fle~sage from node 1
Message from node 2
Hassage from node 3

Debug’s replay command transmits a replay schedule to the double agent on each node.
The execution can then be reproduced by loading the appropriate cxccutables. In the
example above, sender processes arc loaded in a different sequence than in the recorded
run. Consequently, the order in which sender messages queue at node O is also different.
Nonetheless, the event interface guides execution through tie same path as specified in
the replay schedules. ?he result is output identical to that of tic original run.

Figure 7 shows a second system pnxcss, the monitor agent. During replay, the event
interface intercepts system calls and oticr program actions and presents these to the

monitor agent as events. Ultimately, monimr agents will cooperate to collectively
analyze execution. Currently, Ihc information they receive is sent to centralized analysis
facilities on the iPSU’s !%ontend. ‘Iltese facilities use the previously generated analysis
schululcs to dcmnine tcmpcmd relationships between rcproduwl events.

Significant overhead is incurrd each tirm a replayed event is Prcscntd to the monitor
agent prcmss. This amsists of the two amtext switch times required to schedule and
unschcdule the monitor agent. Further, four context switches arc required for alterable
events: two preceding event commitment and two following. This scheduling penalty is
k @cc paid for ease of developmcn~ As the nxmitor agent is a self-contained process,
it is easily loaded from the debug utility, and possesses privileges between those of user
and system processes. This obviates the time-consuming kernel compilation, linking, and
rebooting that were previously rquirwl.

18



Although the monitoring cost cannot be rcdti tlw numbcsof events processed carIbe.
This is the intent Mind the interest d confrof Wts. ?lm interest set contains 8 list of all
events which will be considered by * nmnitm agent. The control set lists the subset of
these events which can lMrdificd.

The system queues governing the schcdul~analyddcscbedule cycle arc shown in figure
1L Xaitially, the queues arc empty. When debugging is to & performed, the monitor
amntmoccsa isloadd and finds itswayontothcrunu. Tltcre, thcagcnt will ~outits
titiali=tion Mm suspending itself m- the agenfwaiiq. Once the filay schcdul~ have
also ken Iododo the u= process can k faithfully rc-exccutd.

8E
~*m

Pmua

a~ntwaltq
‘Unq EEl

Figure 11. System Queues Involved in Schcdulc/Analyzc~schcdule Cycle

The user process will continue executing and remain on the runq until encountering an
event. ACthat rim, it will uade places with UKmonitor agent process and be suspended
on the agentwairq. Wilh * monitor agent then in umtrol, the event may k analyzd
and pombly altcnd. Finally, the monitor agcm and user process again exchange queues,
andex=ution is resumed until the next cvem. During the course of its execution, the
user process may lx suspended on a vtiety of other system queues. Of these, the most
cotrmmn is the~d n.uitq, which is involved in message passing. Unlike conventional
processes, the m&itor agcm process will not be dispatched during these idle periods.

No debugging instructions arc inscmd into the user process, nor is it alterul in any way.
PARADIGM’s trxmitaing is restricted to rhc mechanism pmscnted here. Comapntly,
any sourcc=kvcl debugger may k used indcpcndentiy bf, m in conjunction with,
PARADIGM’s analysis facilities. Event- ●! flow cmrol-bawd breakpointsmay fhus
be used interchangeably between PARADIGM ad ● source-level debugger. Similarly,
PARADIGM’s replay capability has alw been transparently used with other debuggers
such as DECGN.

.

&FUTURE WORK

PAWDIGM ddrcsses the problems of the prob effect with execution replay.
(lmsc+cntly, it should be pssible to distribute the analysis along with the application,
In our fmt attempts, disuibution will h entirely the user’s rcspot~sibility. Ultimately,

19



however, we hope to automate this task. The result should be a more scalable system in
which analysis approaches the rateof event generation.

Another area to be addrcsd is the reading time limitation imposed by in-core event
transcription. The solution typically employed is a disrnbuted checkpoint. Fcriodically,
all nodes simultancuusly suspend prmessing and generate checkpoints. Event buffers are
also flushed to ● tie at this time. All nales then simuhancously resume execution until
he next chcdpointing interval is reached. With this approach,recording duration is
limited only to out-of-cure storage capacity. The solution roquircs only that mules remain
well synchron.kd and that there h sufficient i.n+ms’cst.ofage to buffer events between
checkpoints.

A problem introducd by distributed checkpoints is pcrmrbation of the network state.
Each time the system globally halts for a chcckpoinL the network is evacuated. When
execution resumes, messages which would have been in transit will instead be queued at
their destinations. (lm~uently, exccutiun may differ between chdcpointd and
unchcdcpointi rims.

A possible solution is the cwsive ckckpoinf shown in figure 12. As with the previous
appruach, execution is globally suspended at regular chcckpointing intervals. At each
checkpoint, howeva, the system passes through five phases. During the fi.m phase, en
route messages arc collected at thcix destination nodes. In the second phase, the messages
are rctumtxl-to their tiginating nodes. The third phase involves the actual checkpointing
and buffer flushing. Nodes then cxmqxnsatc for clock drift in the fourth phase. Finally,
in the fifth phase, each node resends its returned mssages at the same intcmls as i~did
prior to the checkpoint. Consequently, network state should be restored when execution
resumes.

#m-
*o- --
\ /

w,

c .,,’
-,

~~ e,.
Q*\\\m ,.*

f *i
Collect Return Synch Resend

Figure 12. Five Phases of Cursive Chec@int

20



The cursive checlqmint requires significantclwk precision. This requirement can be
relaxed by decreasing the intezval between checkpoints. It is not yet known whether
reasonable checkpoint intervals can be obtained under this approach.

ACKNOWLEDCEM’ENTXi

This work would not have ken possible without the generous assistance of several
people. I would like to offer my gratitude to each of them: to nom ~rando, for helping
to make the project ● reality; to Al Hough, for pointing me in the right direction; to Dale
Wade for helping to build PARADIGM; and to John M~ubrcy for remembering all the
~ I havelong forgotten.

The work dcscrild in this paper was funded by The MITRE Corporation at its offices in
Bedford, MA.

REFERENCES

[1]

[2]

[:]

[4]

[5]

[6]

[7]

[8]

Brown, A., and W. Sampson, 1973, Program Debugging: The Prevention and Cure
of Program Errors, London: Macdonald.

Gamia-Molin~ H., F, Gctmano, Jr., and W. Kohler, 1984, “Debugging a
I’ istribuwd Computing System,” lEEE Trmractwm on Software Engineering,
SE-10(2), 21&219.

McDowell, C., and D. Hclmbold, 1989, “Debugging Concurrcn~ Rograms,”
Computing Sumeys,21 (4), ?93422,

Counois, P., F. Heymans, andD. Pamas, 1971, “C%ncurrcnt Control with ‘Readers’
and ‘Writers,’” Communicarions of the ACM, 14(10), 66748,

Gait, J., 1985, ‘*ADebugger for Concurmu Rogmms,” Software Practices and
Experience, 15(6), 539-554.

Lcbhmc, R., and A. Robbins, 1985, “Event-lMvcn Monitoring of Distributed
Programs,” Prtxeedings ojtk Slh ln~ernational Conference on Distributed
computing Syswls, IEEE, 51$522.

bIllanc, T., and J. Mellor-Cmmmey, 1987, “Debugging Parallel RogTams with
Instant Replay;’ IEEE Tra~acd.ons on C~utcrs, C-36(4), 471482.

Wittic, L., 1988, *’Debugging Distribuml C Rogmms by Real Time Replay,”
Proceedings of the Worklwp on Parallel and Distrib’.ted llebuggiti~, SIGPLAN
Norices, 24(1), S7-67.

21



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Curds, R., and L. Wittie, 1982, “BugNet: A Debugging System for Parallel
programmingEnvironments;’ Proceedings of the 3rd Interrwtional Conference on
Distributed Compu@ System, Miami, FL, 394-399.

Feldman, S., and C. Bron, 1988, “lGGR: A System for F40gramDebugging via
Reversible Execution; Proceedings cftk Workshop on Parallel md Distributed
Debugging, SIGPLAN Notices, 24(1), 11>123.

Pan, D., and M. Linton, 1988, “Supporting Reverse Execution of Parallel
Programs,” Proceedings oftk Workdwp on Parallel and Distributed Debugging,
SIGPMN h’otiCCS, 24(l), 124129.

Fmin, A., 1988, “Ubugging of Heterogeneous Parallel progmms~’ Proceedings of
tk Workslwp on Parallel and Distributed Debugging, SIGPLMV Notices, 24(1),
13&139.

Elshoff, I., 1988, “A Distributed Debugger for Arnocm” proceedings of [he
Workshop on Parallel and Distributed Debugging, SIGPLAN Notices, 24(1), 1-10.

Bates, P., and J. Wik!en, 1982, “EDL: A Basis For Distributed System Debugging
Tools,” Proceedings of lk ]5th Hawaii International C’o~erence on System
Sciences, 86-93.

Hough, A., and J. Cuny, 1987, “Belvedere: RoIotypc of a Pattem-Oriented
Debugger for Highly Parallel Computation,” proceedings oftk Yh In fernarional
Conference on Distributed Computing Systems, IEEE, 498-506.

Haner, P,, Jr., D. Heimbigncr, and R. King, 1985, “IDD: An interactive Distributed
Debugger,” proceedings ojtk 51AInternational Cor$erence on Distributed
. mpu$ing systems, IEEE, 498-506.

~ubin, R., L. Rudolph, and D. fimik, 1988, “Debugging Parallel Rograms in
Parallel,” Proceedings of tk Worbhop on P~rallel and Distributed Debugging,
SIGPUN Norices, 24(1 ), 216-225.

Helmlxdd, D., and D. Luckham, 1985, ‘TSL: Task Sequencing Lnngunge,”
Proceedings of tk Ada Intermtioml Co@ence, Paris, Fmnce, 255274.

Goldszrnidt, G., S. Katz, and St Ycrnini, 1988, “Intemctive Black Box Debugging
for Concumcnt Languages,” Proceedings of tk Workhop on Parallel and
Dtitribwed Debugging, SIGPLW Notices, 24(1),271-282.

Snodgmss, R,, 1988, “A Relational Approach to Monitoring Complex Systems,”
ACM Tra~actiou on Computer Syswm, 6(2), 157-196.

22



[21] Schwan, K., R. Ramnath, S. Vasudevan, and II Ogle, 1988, “A Language and
System for the Construction and Tuning of Pura.llel Rogra.ms,” IEEE Tramactioms
on So~re Engineering, SE-14(4), 45-71.

[22] Hough, A., 1991, Debugging Parallel Program using Abstract Visualizan”ons,
Ph.D. thesis, COINS Department, University of Massachu=tts, Amherst, MA.

[23] Smith, E., 1985, “A Debugger for Message-based ProccssesY So@ware Practice &
Eqerience, 15(11), 1073-1086.

[24] Malony, A,, J. Arcndt, R. Aydt, D. Reed, D, Grabas, and B, Totty, 1989, “An
Integrated performance Data tilhion, Analysis, and Visualization System;’
Proceedings of tk 4th Co@rence on Hypercubes, Concurrent Computers and
Applications, Monterey, CA, 229-236.

[2S] Tsai, J., K. Fang, and H. Chen, 1990, “A Noninvasivc Architecture to Monitor
Rad-Ti.mc Disuibutul Systems,” Cornpuser, 23(3), 11-23.

[26] Mink, A., R. Carpenter, G. Nach~ and J. Robins, 1990, “Multiprocessor
Performance-Measurement Instrumentation,” Compurer, 23(9), 6>75.

[27] Reilly, M., 1990, A Peflotmance Monitor for Parallel Program, Boston:
Academic kCSS, Pg. 12.

[28] Lamport, L., 1978, “Time, Clocks, and the Ordering of Events in a Dis,tibutcd
System,” Communication of tk ACM, 21(7), 55*564.

[29] Williams, M., S, Smith, and G. Pccelli, 1989, “Experimentally Driven Visual
Language Design: Texture Perception Experiments for Iconographic Display s,”
proceedings of the 1989 IEEE International Workshop on Visual Languages,
Rome, Italy, 62+7.

[30] L.cBlanc, T,, J. Mcllor-Crumrncy, and R. Fowler, 1990, “Analyzing Pamllcl
program Executions Using Multiple Views,” Jourrud of Parallel and Diwribufed
Computing, 9(2), 20Y217.



On-thdly Detection of
Data Itacea for Programs with
Nested Fork-Join Parallelism

John Mellor-Crummey

CRPGTRQ1133
1991

C1mltmfor Ilfwnrrh Im I’nrnlbl t ‘{111111111111i{]ll
I{irr I IIlivursily

1’, (). lhx lKfi2
11011s1011,”TX 77?!,1. 1X112



On-t] e-fly Detection of Data Races for Programs with Nested
Fork-Join Parallelism*

John M. Mellor-Crummeyt
(jobnmc@rlce.eclu)

Center for Research on Parallel Computation
Rice University, P.O. Box 1892

Houst.on, TX 77251-1892

August 1991

Abstract

Defecting data ramsine hared-memoryp arallel programs is an important debugging prob-
lem, This paper preaenu a new protocol for run-time detection ol’ data rams in executiom of
shared-memory programs with ne~ted fork-join parallelism and no other inter-thread synctlrw
nizalion, This protocol has significantly smaller worst-caae run-time overhend than previou~

techniques, The worst-c- npace required hy our protocol when monitoring an ●xrcut ion of a
program P is 0( I’N j, where V is the numtrer of shard variabks in P, and N is the mmimunl

dynwnic m!sting of parallel conslrurm in P’s execution. The worst-case limr required LrI perform

any Ilioniloriug operation is O(A’ ), We forlllally prow’ thhl our new protocol dwayri rrq)orlRn
non+nlpty subset of k datm ram in a monitored program execution and descrilw how thiri
properly kads to nn effective debugging stratugy.

1 Introduction

1



range from those that consider loop parallelism [1, 4], to those that consider more general tasking
models [3, 14]. The conservative nature of static techniques, however, often leads to reports of data
races that could never occur during execu t ion. Experience with static analysis tools has shown
that the number of false positives reported using these techniques is tocr high for programmers to
rely exclusively on static methods for isolating data races, Combining static amdysis with symbohc
execution offers hope for reducing reports of infeasible races i15].

Post-mortem techniques for detecting data races involve collecting a log of events that occur
during a program’s execution and post-processing the log to look for evidence of data races [2,5, 10],
If exhaustive logs are recorded, post-mortem techniques will report only feasible races. The primary
drawback with post-mortem techniques is that execution logs can be enormous for parallel programs
that execute for more than a trivial amount of time,

On-the-fly techniques involve augm~nting a program to dekt and report data races M they
occur during its execution [6, 7, 9, 11, 12, 13]. These techniques maintain additional informa-
tion at run-time to determine when conflicting accesses to a shared variable have occurred. Like
post-mortem techniques based on exhaustive logging, on-the-fly techniques report only feasible
races. In general, on-the-fly techniques require less space than post-mortem techniques since much
information can be discarded as an excc ut ion progresses.

fin-the-fly t~hniques for detecting data races fall into two clams: summary methods [9, 12, 13]
that report the presence of a data race with incomplete information about the references that causwi
it, and access history methods [7, 11] that can precisely identify each of a pair of accvssm involvwl
ill a data race, Fron] a programmer’s standpoint, tho precision of the information possible using
access history methods is desirable for debugging. In the remainder of this paper, we focuti on
aCcess history methods.

To pinpoint accmses involved in data races, access history mnthods maintain two typw of
information at run limo: the thrcad~ (along with annotiitionb identifying tbr ~ource code ~t.atcnwn(s
involvwl ) that havo arrwwml w+ch shiirwl varialdr, and information that cniitdes dotcrminiition of

WIIV[ hcr any two thr(’ads arv logirally concurrent, \VIIcII I t bread t acrmsm ii sharrd varialdr, t II(1
thread

1, detcrminofi if any thrw.1 in the history list prrformw.1 MI across that, conflicts with I‘s currm[
arr{’sti.

2. rqmrts a data raw if H thrwd that madr a Ccmfliclillg arcoss is logically mmcurront willi (,



is program independent, yet our protocol ensures that if any data races exist in an execution, at

least one will be reported. With this condition, an execution will never be erroneously certified ~
race free.

Bounding the length of history lists has two advantages. First, it reduces the worst-case space
requirements. Second, it reduces the worst-case number of operations n~essary to determine
whether a t bread’s access is logically concurrent with any prior conflicting accesses.

SeCtion 2 presents a graph model of fork-join program executions, This model serves as a
framework for proving the correctness of our access history protocol. Section 3 presents t3flset-
Span Labeling, an on-tine method for assiguing names to threads in executions of programs with
nested fork-join parallelism. Using Offset-Span Labeling, the concurrencey relationship between any
pair of threads can be inferred by comparing their names. Although similar to English-Hebrew
Labeling [1 1], in the worst-cue, Offset-Span Labeling assigns asymptotically shorter thread names,
which lead to improved space and time bounds for access history protocols that use them. Section 4
presents our new protocol that uses bounded access histories to detect data races. Using properties
of fork-join graphs and their respective Offset-Span labelings, we prove that if any data races
exist in an execution of a program with nes?rd fork-join parallelism but no other inter-thread
synchronization, our protocol will report at le~t one data race for each shared variablo involved in
a race. !%ctiou 5 compares the time and space overhead of using our access history protocol and
O!Tset-Span labels against the overhead with incurred using other access history methods. Section
6 describes the current status of this work and directions for future work,

2 A Model of Concurrency in Fork-Join Program Executions



[code block AI
PARALLEL Dfl 1=2,4

[code blo~ E]
IF (1. EQ.2) THEN

PARALLEL DO J = 1,2
[code block Cj

ENDDO
ENDIF
[code block D]
PARALLSLDO J=l, I

[code block El
ENDDO
[code block FJ

ENDDO
[code block G]

Figure 1: A fragment of parallel Fortrau and its corresponding fork-join graph.

trivial.

De9nition 1 A fork-join graph G = (V, E, u.,., U.nk) is a DA G fhal

● has a de~ignated Hourw w rlcr vn~csuch that v8~CUC v, for all v ~ }’,

● has a &signatrd sink krlez t~anksuch that VU; v,nk, for ail v E ~“.

● can k consirwckd using the jollou~i~~g rukti:

f. A ~ingkfon vertcz v dmoffs a Iriuid fork-join gm~h G = ({v}, 0, v, v).

2, A rompmd Jerk-joill gmph ran bt jurmcif in (WOwa~s:

parallel composition

A Ml 5’ = {{;, = (lj,l.’1, (7,7,.,,7!,,,k, )[i = 1, n} of ?I ~ 2 dtijoinf fork-join
bf linkd ill parulit ~ If) jurlll a IIC’U’ffJrk-]0111fJMph 6’ = ( i’, !.’, ll.,c, ~J.,,k)

1’ = { 1’s,c. ~’snk} + IJ,sl,ri ~“,

1: = (J,=,,,, (L’, + {( I’m! ~’,r(, )) + {(t’snki, t~s,,k )))

serie9 composition



fork-join graph for each parallel loop is formed by parallel composition of the fork-join graph for

each loop integration.

The series composition rule describes how to link a pair of arbit rary fork-joiil graphs in sequence
by merging the sink vertex of the first graph with the source vertex of the second graph and retaining
all of the edges. In figure 1, each node labeled “B,D” is the result of series composition of trivial
fork-join graphs representing code blocks B and D respectively. Similarly, the fork-join graph that
represents iteration 1=2 of t’le outermost parallel loop is the series composition of the fork-join
graphs for the two loops nested inside.

Two vertices VI and w in a fork-join graph G represent logically concurrent threads in an
execution of a fork-join program ifl u] +~ V2 A w +fi V1. The only ways this formula can be
falsified is if u] and U2 are not distinct, or if U1*G vz V V2 uc U1. If the vertices are rmt distinct,

the threads are the same and thus not concurrent. In the second case, the vertices are related by
a path of directed edges. The interpretation of a directed edge (ZMdescribed earlier) as temporal
precedence and the transitivity of this precedence relation for paths of edges means that U1and U2
could not in fact be concurrent if they are connected by a path of directed edges.

To facilitate inductive proofs about fork-join graphs, we define rub=(G) to be the minimum
number of applications of the series and parallel composition rules needed to construct a fork-join
graph G from a setof trivial fork-join graphs. (It is important to define rule(G) to be the minimum
number of rule applications since applying series composition to a pair of trivial fork-join graphs
results in another trivial fork-join graph.)

3 Offset-Span Labeling

Of~sct-Span labeling is an on-line scheme for labeling each thread in a fork-join program execution.
Each thread’s label contains information that identifies its position in a corresponding fork-join
g’a}’h. By comparing the labels of two threads, their concurrency relationship can be deduced.

Offset-Span labeling is similar to Nudlcr and Rudolph ‘S Enghsh-flebmw laldin[ [1 I]. III bodl
OKset-Span (OS) and English-Hebrew ( Ell ) labeling, a thread in an execution of a fork-jcin pro-
gram computes i16 own unique Iabcl using only local information — specifically, the label(s) of its

immediate pr~d=essor(s) in ii fork-join graph. (In cent rsst, the Task R~ycling technique [(i, 7]
1rquirm a wntralizcd data struct urr to maintain information about free task dcmriptors. It is
pr{’feraldc to avoid use of centralized data structures in parallel programs since they tend to in-
troduce tierial bottlentwks. ) In bot!l E}{ and OS labeling, the IF@ h of a thread’6 labd inrrmws
along wit h tho nesting depth of fork-jnin constructs. AIKo, both Rchmnes use a lexicograpl~ic-sty l{’

comparison of labels t“ determine if the thretids they rcprwmt are concurrent.
An advant agc of 0S Ial.wling is that itfi definition guarantmi thi~t I ho length of a t hrvad’s

0S lalJf’1 i~ ahuyx proportional to the current nesting d(’ptk of the fork-join pair ~urrounding lhc

tbroad. ‘1’hr Irngt h of thv 0S l;~brl for a thread following ii join i~ alway~ equal to tlw hwgth of tlw
OS MM fur t ho thrrad that vxmutwl t tic matching fork. UAng Ell Iabcling (as dcscribcd in [7]),
tho Ivngth of a thread ‘HMcI ran grow in proportiml to the numhor of fork ~qwration~ Pncuuntcrvd

ahmg t IIV oxvculiw pnl h Iotiding 10 I III* rrratiou of 1II(’ lhrvad; t 11(1h’llgt h of i,ll I;l[ Iiihf’1 following

iI join is grciitor than thv hmgth of tlw 1;1[ Iitlwl for ttw lhrwl that rxvrulod 1110Illatrhing fork.
l)inning ;md !+rhonlwrg nwnlim 1110oxiHlvnw of a hwrislic [7, p. 4] tllill rqmlmfly Iihlith Lll{’
l(wp’ II l}f 1’;11Iahvls 10 Ilw IIWIIIof nlwtiug, II is imptlrlallt I(J nlininlizo III(’ hwgl RI of Itilwhi uswl
IJ,VI11{%1*Ilivl ll(~ds tiincv hhortvr Iiil)lhl!i ro(lllr(” 111(1?iI)il(’(h rvquir(d I(J Hlor{’ I 1111111;Lt [Ixiwul,ioll Lilll(’ il!i

w(4I M I II(I Iillw NpIIIit rol[lp~rillg I lWIII.



DelhMon 2 An Offset-Span labeling of a jo~join gmph G ussigns a label carwisiing of a non-
null sequenm of omkred pain io eaeh oj the vertices oj G. Each ortkmd pair [o, a] umsista oj two
conqments: the offset and the Bpan. The spm indicatm the nurnkr of thmadz spawned by an s-
wap jd jmm &id this label pair is descended. The oflset distinguishes among mlatiw d&cen&d
jmm the same ~mmt. An OS labeling of a jor4-join gmph G = (V, E,v.rC,v..~) is computed as
jdk- ~i~n an iniiid OS &&?! for V.,.that~~bb Oj a nofkdi 8eqtit?n~of o’!!?etdpafi~if%’

1. For a W*Z v ● V of out&grce n > 1 (v is the aoume node oj some jori+join subgmph of
G) that has an OS label oj L, where L is some non-empt~ squenti oj label paini (her@er,
- we the notation OSL(V) = L): kt vi &note the ith child of u, O s i < n (the ontkm”ng
q/ the children is irw~nfirnnt). Assign OSL(vi) = L[i, n], tiere juztapmition oj L and [i, n]

irnpk mrumtenation.

2. For a tzrtes v oj indegree n >1 (v is the sink mxfe oj some jofi-jm”n su~mph oj G) that
has some labekd oertez # as a pmd-wor: 3L,.,W~,WOSL(V’) = L[u, w][z, v], *em L h a
(pssibl~ null) sequence oj lakl paira. (In a jort-join gmph, OSL(V’) mwt & oj this jam.
An~ nak in G other than v.,. or V.nk has an OS lakl consisting of at kast two label paim.
By the tkfinition oj jok-join graphs, v,,, mnnot be the prmiemasor oj anp mrtez oj indegrte
> f and O..k cannot k the predemssor oj any wwtez.j Assign OSL(V) = L[u + w, w].1

The labeling is complete Bince by the composition rules no vertex in a fork-job graph can
have a predecessor of outdegree 1 and itself be of indegree 1. The labeling is consistent since the
composition rules guarantee that any vertex that is a successor of a vertex with outdegree > 1 h=
indeg~ 1. Comparisons between two labels are made by comparing the corresponding ordered
pairs in the label sequences from left to right. Each tbread’ri OS label in an execution of a program
with clod, nestable fork-join parallelism can be computed on line efficiently from the label of its
predecessor. Figure 2 shows an OS labeling of the fork-join graph shown in figure 1.

The following lemma shows the relationship between the labels assigned to the source and sink
of a fork-job graph. Note that this lemma also implies that the length of each thread’s OS label
assigned using the rules of definition 2 is dir~tly proportional to the nesting depth of fork-join
constructs surrounding the thread.

Lemma 1 h an OS labeling oj a jo~-join gmph G = (V, E, V,,C,l~.,lk)l if U,,C has a lakl P[o, s],
where P in an arbilmry (possibly null) sequence oj ordkd lakl pim and o and s am arbihur~
mrwtantu, then U,mkhas label P[o’, s], jor uome d such thal o mod a = c/ mod 8.

Prwf Induction on the size of G’as measured using rule(C’).
Base Cae. For any triviaI graph G (ruk(G) = O), the lemma is oatisfied with o’= o.

Jndurlion fl~thcski Assunw that the lemma hold~ for every fork-join graph G wilh rule(G’) < k.
Muclion Step. Show that tlm lemma holds for each fork-join graph G with rulr(G) = k. WI
consider applying each of the composition rules to a collection of (h’,,i = 1, n (n ~ 2) fork-join
graph~ with ~~=1 rule(C’i) = k -1.

(i



[0,1][0,3][0,2]

[0,1][3,3][0,2]

[0,1][6,3]

Figure 2: An Offset-Span Labeling of a fork-join graph,

merges U,nkI with v,rC2. After the merge, the labeling remains consistent. Since L’.rcz has no

incoming edges in G2, the label of the merged node is completely determined by the labels
of the ancestors of U,nk, in G]; thus, the label of the merged node remains P[ol, s]. Since
U,nkI has no outgoing edges in Cl, the outdegree of the merged node in G remains the SWIIC

M ttiat of u,rC2 in C’2. Therefore, the labels of the descendants of u,rc2 remain the sanic. Ijy
transitivity, o mod s = ~ mod s and the lemma is satidied for graph G’.

parallel All application of the parallel composition rule to form f; = (V, E, r.,., I),nk ) [ronl a
sol .s = {(J’, = (~~,~l,u,,~l,~’,~kl)li = 1, n} of 71 ~ 2 disjoint fork-join graphs, whore

~~=1 ru/f(L’, ) = k - 1. By the induction hypottmis, 1110lemma holds for both cacti f;,
s~paratcly. LQt tr,~c, have OS lid-w] P[i - 1, n], By the induction hypotlwsis u#n&lhati Ialwl
P[u,, n]. whvrc (i – 1) mucl n = q mod n. ‘W parallel c.[mlpotiitiull rulv litlk~ V,,r tu mwh

‘-J?c, Q i= I,n and links Uj,,k,, i = 1, n to V,,,k.l,ctthe 0S latJ(Blof Vs,r tw /)[o,,~]. I,cttillg
P = P[o,.$]makcti tht’ all of ltw lalwls of nodm in subgraphr f;,, i = 1, n consititmlt with
t h~’ latwliug rules, My MAing rule 2, V,,,k in assigned Ialwl I’[o + .9,s] tiinro itri allcvst~)rs

‘ = 1, n haw’ OS Ialmhi IYIu,, n] = 1’[0, .q][o,,n] rw fwtivrlytI?.,,k,, ~ ‘l-ho lemma is ~atislicd for
G’ sincr o mod s = (0+ .~) rnm.1,%.

‘rho Iomma follows by tlw principlo of induction. u
In ill{’ followirlg IPnlrllii, WVsll~~w’that tl~ mmlparing lhc 0S liLlJ(4k for ii pilir of I tlr(’iL(lh ill ;III

cxcruticm. it is !ith@lt-f(Jr W’~d to dctlwnlinv if {)11(’Ihrvwl Il;h Iinisllwl 1)(’f(]rr:1s(IrI)IIdIIIroa(l l)c~gills
( i,r., t ho v{irlicvs roprckrll[illg tlw Lhrwuls tiro rolat wl hy ‘~r; in tlw fork joiu gr:lpll f; rf’prvhvnt ing

IIICI (’xorution ),

Lemma 2 (;il~ n tl~t ().s I(ilwlilq OJ (I ~ork-joili !Imp/I (i : ( \ , /,’. r,,,. r,,,k ), I , ..{; y, i< Irm jtw

7



z, y E V iff one oj the fallowing properties holds for their mqwctitw OS labels, OSL(Z) and OSL(y)

case 1 +,s(OSL(Z) = P) A (OSL(y) = PS) where both P and S ae any non-null sequenm of

ordered label pairs.

-e 2 3p,s=,sw,0=,0w,.(OSL(z) = PIo=, s]SZ) A (OSL(U) = Hou~sl%) A (o. < Ou) A (o= mods =
OUmod S) where P, S=, and Sv an? (possibly null) sequenmz of oniered pains.

Proof Any fork-join graph that contairm more than one vertex must have been constructed through
some sequence of applications of the parallel and series composition rules. Let G, = (V,, E,, u,rC,, u,.k, )
be the smallest fork-join subgraph of G that contains both z and y. Case 1 holds iff G. was con-
structed from a set of disjoint fork-join graphs using the parallel composition rule, z = v,rC,, and
$16 Va- {vJTCa * %nka). Case 2 holds iff (a) G, was constructed from a set of disjoint fork-join graphs
using parallel composition, z E V, - {usnk, ), and y = vsnk~, or (b) G, W= constructed by linking
some pair of disjoint fork-join graphs using series composition. In case 2, P is null ifl G, = G,
S= is null ifl z = V,rc,, and Su is null iffy = vank,. The enumeration of ancestor relationships
covered by these cases is complete. C-e 1 and 2a cover all ancestor relationships if the last rule
applied to form G, was ti. ,, wallel composition rule. In these cases z has to be V.re, or y has to be
v,.k,, otherwise G, would not be the smallest subgraph that contains both z and y with z ~~ y.
Case 2b covers al.! possible ancestor relationships if the last rule applied to form G, was the series
composition rule. •1

Below, we define a left of relation that defines a partial ordering of vertices in a fork-join graph
that are not related by the w~ relation (i.e., vertices that represent cone urrent t breads). The
access history protocol described in section 4 requires a labeling scheme for which a left-of relat :on
can be defined. English- Hebrmv labels contain sullcient information to compute a left-of relation,
but labels assigned by the Task Recycling technique do not Here we define a left-of relation for
OS labels,

DeOnit ion 3 For cn OS lakling of a fork-join gmph L’ = (V, E, v,,,, U,nk), the ‘left of” re]alioll,
denoted I <G y, is true for z, g c V iff iht following pmprly holds for their OS labe/s OSL(Z) and
OSL (y)

+,,;=,,~,(~s~(z) = ~[or, s]$=) A (~sf.(y) = PIOV,.FJ]SU) i\ (o= mod s c OVmod s), P ti
a non-null sequrncr oj omlcmd lukl puir~, S,. and SM uw (po.wildg null) st:qucmws oj
ordcwd labrl pairs.

ThQ left-of relation e~talrlhhes a canonical ordering of relatives with respect to their Iowrst
common ancestor.

4 A Protocol for Detecting Data Races



carried by a parallel construct ( i.e., static analysis w= unable to prove that some reference by a
logically concurrent thread does not result in a conflicting access to the variable), At each variable
reference that is an endpoint d a dependence carried by a parallel const rurt, the transformer must

add a call to a monitoring protocol that inspects and updates the variable’s access history. The
transformer must also insert statements that enab~e each t bread to compute a label that refhx ts
its cone urrenc y relationship to other threads. At execution time, the monitoring protocol reports

any logically concurrent, codicting accesses to a shared variable.

For an execution of a fork-~n program, the existence of a data race involving a shared variable

is solely a function of which threads access it and the concurrency relationship between the threads
that is implied by the fork and join constructs in the program. Therefore. we can consider data

races for each shared variable independently.
We define an access inferkmn”ngto model a set of accesses to a shared variable by t breads in a

fork-join program.
Definition 4 An access interleaving jor a shared variable X b~ lhmada whose nm-fime concumncy
relationship is modeled bp a ja+-joi~ gmph G = x . 1$ consists Oj(~’,E, u,,,, tl,nk) ti deno(ed ~G
a totally ordered swquenm of actmses A I,. . . . An. Each acces~ is prrjonncd by somt thrvad; let

t~c(A) 6 k- be the ~rtez in G fhat rvprcsen~ the thread that P rfonned the occess A. A n accta~
A, 6 1# ma~ uertez UG(.~, ) w“th either an X,,ad or an XW,,,C take n. htullipl~ acmwes in It may
mad the same vertex, and a mrtcz can k marked un”thboth .~,,.d and AW,,l, tokns. NV acms.$
Al E i; may mark a uerter ml E 1’ if some .4, E l:, i < j previously marked a uertrr V2 6 V such
that 1’1-c v2.

The definition of an access interleaving assumes seqrmnlialfy consislcrd [8] shared memory. We reim
to an access in /# as a mad ~f it marks a vertex with an ~rtad token, or as a umk if it marks a
vertex wit h an XW7,f, token.

In the remainder of this section, wc present protocols for detecting data races caused by COII-

Ilicting accesses to a single shared variable and prov~ their correctness, M? formulate the prohlmn
of on-the-fly detection of data races as detwting conflicting, logically concurr~llt WWMW ill all

arcess irlterleaving for a shared variable. An acrcss interleaving If! for a variable X and a fork-join
graph 6’ = (1“,E. r,,=, r,nk ) is checked if for each arcrss .4 E f:

● if A is a read th~ checkread protocol (figuro 3) is rall~d with a pointrr to X ‘tiacrms history

and ttw label for t hr~~adWG(A) (the throacl performing t ho arctwi). and

● if A is a wrilr the check write protofo] ( figure 4 ) itic~kd with a iminlor to .x “haccwm hiSt(Jr~

and the thread Iabcl for w;(A).



checkread(accoms~intory, thread2abelj
if accasshistory - .UIUt +~ threadJabel then

report a WRITE-READ data race
endif
if thraaddabol <G acc.sshistory - .Rll or

accasa~iszory - .Rll wc thread Jabol then

●ccaes Jiotory - All := throaddabal
●nd if
if accammhimtoq - Rlr +G threadJabel or

accoaa~istory - .Rlr wc throaddabol then
accaas~iatory - .Rlr := thr.addabal

end if
end checkread

Figure 3: Monitoring protocol for a read.

checkwrite(accoss~ istory, throaddabol)
if ●cc~sa Aistoq - .Ulut +; thread dabol then

report a WMTE-WRITE data race
end if
if access ~istory - .R1l +& thraad~abal or

accooo Jimory” .Rlr +; throaddabol then

report a READ-WRITE data race
endif
accosshistory - .Ul~~t := thr.addab.l

end checkwrite

Figure 4: Monitoring protocol for ii wrilv,

RI I +,, Ii ARII $s{; /f r If -,; RI, A RI, /.,; /( ARII Iv; RII ARII /“~;HII (1)



It must be the case that R #-~ Rlr A R ~~ Rll; otherwise, by transitivity of the --~ relation,
R ~~ W, which violates the ~upposition that R and W are logically concurrent. This implies
f? # Rll A R # Rlr. Using this to refine ( 1) we can conclude that if such an R exists,

If Rlr = Rll, then (2) is not satisfiable and there can be no R concurrent with M’; therefore, if such
an R exists

Rlr # Rll (3)

L&t c, = (~’.,JY,,%rc.,%nk, ) be the smallest fork-join subgraph of G that contains both Rll
and Rlr. By (1) ~d (3), R1l ~fi Rlr ARlr ~fi Rll; therefore, v~rts # Rll A v.,,. # Rlr. A corollary
of this is that Ik\l > 1 which implies ruk((l,) >0. The composition rule last applied to cormtrurt

C. could not have been the se-ies composition rule. The condition that G, is the smallest fork-join
graph containing both Rll and Rlr would imply that one vertex must be in each of the components
linked in serieg; this contradict (1) since Rll and Rlr would be related by -c. ‘1’hereforc, C’,
must have been formed from some set S of disjoint fork-join graph~ using the parallel composition
rule. Both Rll and Rlr cannot belong to the same element of S, otherwise G, would not IN tlw
smallest fork-join graph containing them both. Tlwreforr, V,,C, is thv clo~est common ancetitor of
Rll and Rlr, and L?,nk,is their closest common dwmndant. Since Rlr -c W and Rll -G W, tll~ll

Vmk8 ---~ L-l’. AHju~tified below, V.re, must bo an ancestor of R ( i,t., v,rC, -UG fl):

● lf R w;; v8rC8. then 1? -UC Rll A H -c Rlr. By transitivity of th~ path relation, R w(; 11’,
contradicting the suppotiit ion that M and M’ arc logically concurrent.

● If R is to the left of U,rf,, tlwn by definil ion of +(;, H +(; Rll, contradicting ( 1),

● M V,r,a iti to the left of R, tlwn by Mnitiml of <~, Rlr +; 1/, contradicting ( 1).

II



Th-rem 3 In a checked aaxss interleaving 1~ for a variabl~ .%’ and a jerk-join gmph G =
(V, E, V,rc, V,nk ), a data mm will & mporied ij a wad in 1: is logically concurmni with SOIIM
eariie r urrs”tein Ii.

Proof Suppose w ● 1# marks W ~ V with an .YWritCtoken, r E J: marks R 61’ with an ~,,.d
token, W precedes R in l;, and W and R are logically concurrent, but no data race is reported.

Without loss of generahty, assume that vertices in V ar~ named by their thread labels. If there
is no intervening write between w and r in 1#, when checkread executes for r, Ulast = W and
check read will report a data race sinc~. by supposition H’ and R are concurrent.

If there is some sequence of writes WI,.. ., Wn betw=n w and r in 1~ then it cannot be the

C- that W W; VG(WI), ~(wi) -~ ~G(wi+l) for 1 < i < n, and Uc(wn) -; R; otherwise
by transitivity of the w~ relation W ~~ R, contradicting our original supposition that they are
concurrent. If M’ +~ UC(Wm),then uc(w~) ~~ R, otherwise W and R could not be concurrent,
In this case, at vertex l?, Ulamt would contain the label for UC(w. ) and check read would report a
data race between UC(w“) and R. Otherwise, if W ~~ VC(tVn), then w iti concurrent w~th w. and
by theorem ‘2checkwrite will report at least one data race for some pair of adjacent writes in tlw
subsequence of f~ beginning with w and ending with w,,. ❑

Theorem 4 In a chccktd arcrs~ iutcrleaving 1$ $or a variable .x and a fork-join gmph C-’ =

( I‘, L, v,,,, tl,nk ), at lPW1 om data mm will & rr~rttid if thtrv UK ang conflicting, logicall~ colI-
cunrnt acmweti in Ii.

Proof Thwc are three casm of conflicting arcesscs to consich’r,

1, a read i~ concurrent wilh a write, and tho rmd prem.h the writo ill /#,

2, two writv~ arc roncurrvnt,

ti, a road is concurrent with a writr, and thr writo prmwlm thv rwl in f~~.



Time

Algorithm Space Thread Creation & Per Access
Termination

Task Recycling 0( VT+T2) 0(7’) O(Tj

EH Labeling O(VT + min(l?N, VTN)) O(N) O(NT)

OS Labeling O(V + min(BN, }’N)) O(N) O(N)

Table 1: { llpariaon of Worst Case Time and Space Requirements.

input to behave differently would be if there were some form of non-determinism present. Data
r=ea are the sole source of non-determinism in programs that have nested fork-join parallelism but
no other inter-thread synchronization. Therefore, if no data race is detected in one execution of
such a program for a given input, then no data race can exist in any execution for that input.

Practical implementations of the checkread and checkwrite protocols described in this sec-
tion must respect the underlying assumptions upon which the correct ness proofs are based. III

particular, all update~ and inspection of an access history by the checkre.ad and checkwrite
protocols must be coordinated. Without coordinating updates to a variable’s access history, the
check read protocol could not corrtxtly maintain tlw invariants with respect to Rlr and Rll. The

simplest rmrdination strate~~ is enforcing mutually exclusive accms. Such coordination could
cause bottlenecks if there i6 pcrvaaive read sharing of a variable among conrurr{’nt threads, 13y
usiug dependence analysis to limit monitoring instrumentation to only the cwwi in which read-
writ~ conflicts mem imminent, hopcful]y such hot tlenecks could be avoided, Ot hor less rctitrictive
coordination strategies appear pomit. do,but it would bc necessary to relax tmnw of tlw invariant
maintained by the protocols and show that data races are guarantwd to bc detoctcd evrn with
rclaxwl invariant.

5 Analysis

II) this mt ion we examine the spaw and timo complexity of using our am’sh history protocol with
Offsvt SpaII Iahvhi and compare it to t IN’romplcxity of t ho protocuhi dwicrilml in t ho litt’rilt ur(’

for Knglifih- llcbr~w I.aholing [ 1 1] and T;Lsk Rvcyrling [(i, 7], ‘]’0 IN consi~lvnl wit h t II(’ notati(m of

Dinning and %’honborg [(j. wc prmwnl our analysis ill terms OftII(If(Jh)Will~ pitritmvt vrs:

1-,,
nlaxirnum logical rOnrurrvncy

1’ nunllm of mmilorwl Aawl varialhs
,$’ m~xitnum Imwl of fork. join IIVSIing

11 total numbvr of Lhrvadh in aII vxorution



Since T threads may be active simultammmdy, T2 space may be nakl. in EH Labeling, the sizo
of an EH label for a thread is proportional to the nesting depth of fork-job constructs which is
bounded by N. (This analysis assumes the existence of an effective heuristic alluded to by Dinning

and Schonberg [7, p. 4] that limits the length of Iabelti to 0(N). Wit bout the heuristic, labels can
grow arbitrarily long. A description of the heuristic was unavailable to the author of this paper at
the time of this publication.) If access histories store pointers to EH labels, each label is at most of
length N, and there can be at most VT distinct pointers to labels, lf reference counting garbage
collection is used, the maximum Bpace used to store EH labels is bounded by O(VTN ). U the
number of threads in a program ex-ution B is less than VT, then this places a tighter bound on
the space to mtorethe labels of 0(f3JU ) since at most one label per bead needs to be stored.

In the expression for the worst-cuw space complexity for our new accem history protocol using
Offset-Span labels, the first term accounts for the constant oize access history for each monitord
variable. The second term reflectn the apace needed to store OS labels. If access histories stoma
pointers to OS labels, each label is at most of length N, and there can be at moat O(V) distinct

pointcrg to OS labels. If reference counting garbagecollection ie used, the mtimum ~pace u~d to
store OS labels i~ bounded by 0(1: N ). If the number of thrcadti in a program execution f!J i~ Icmi

than V, t hell this places a tighter bound on the ~pace to store the Iabelg of 0( AJJV) Eince at mo~t

one label pr t bread needB to bc ntorml.

The worBt rum time to verify whether an individual acccm to a variablr is involved in a data raco

is O(TfV ) for thr EH Labeling protorol sinrc an accesti may ncwd to bc compared agahmt ?’ entrim
in the varid.lc’s accesti history and each comparim.w may takr 0( N ) time. For Tad; Wycling, III(D
worst cm’ tinm to vcwify whether an individual acmwi LUa variablo i~ involvml in a data ram’ is
O(T): the parrnt valor rcpremntation in Task Rwyrling cnablm acmws corupariscm in constant
time, but a compariwn nmy b~ mwdedfor wch of 1’entrirn in a variah]r’~ acmHH hi~lory. Fnr 011r
IIC’Waccmri hi~tory protocol with OITsoI-SpaIIIabdh, tII(’corrmponding tinm itionly 0( N ) riincvthr
MJol for tho current arccw nd only INIc.ofnpard with a cmmtanl numlwr of 01Iwr Ialwlti.

‘IWIwor :1.cw time owrhwl al thrd crmtifm for Ml and OS Ialmling i~ 0( A’) fur amigllmrnl
of a blJt’1 o,” biza’ 0( ~ ) to a thrmd, ‘1’mkKlwyclit’g incurNwortit-caso ovmhmd of {~(’/’) al thrwd
rrcalion tin I tmminht ioli ~inrr a parrnt vvc Ior of ~izr 0( ‘1’)nmy nrvd 1u IN’crohlwl for Mnvw
lhrrad, an.i WIIKWLlwadhInorl NI ii jnin, tlwir pwrvnl Wclurn of nizr 0(T) must lJr nwr~rd.

!+illrr T i~ Iypirally grohlor than 2Y. u:ting our nrw arctwfiprulomd rrprwwnts h ~ignifiri~nl
W(JM~-~M41 htivin~h in hot h ripww aml timr ovm wwlior prolorul~ for on-t ho fly dolcwliou d d:Il:1
rwm,

6 Status and Future Work

II



of synchronization such as sections in DO ACROSS loops and the PCF FORTRAN generalization of

this construct: ordered sequence synchronization. Preliminary indications are that the protocols
will extend naturally to accommodate this larger class of programs.

Acknowledgments

1 thank the referees for the improvements they suggested and 1 am indepted to the referm who
pointal out several erratta. Robert Hood and Seems Hiranandani participated in early discussions
of these ideas. Robert Hood implemented the prototype dependence. based instrumentation system.



References

[1] R. Allen, D. Baumgartner, K. Kennedy, and A. Porterfield. PTOOL: A semi-automatic paralkl
programming assistant. In Pm. OJthe f986 lntemational Confewnce on Pamllel Processing,
pages 164-170, Aug. 1986.

[2] T, R. Allen and D. A. Padua. Debugging fortramon a shared memory machine. In Pmt. oj

the 1987 International Conjewwe on Pamllel Pmce8sing, pages 721-727, Aug. 1987.

[3] W. F. Appelbe and C. E. McDowell. Anomaly reporting - a tool for debugging and developing
parallel numerical applications. in Pmt. First Intemalional Conjenmce on Supemomputew,
FL, Dec. 1985.

[4] V. Bala.sundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Sublok, The ParaScope editor:
An interactive parallel programming tool. In Pm, Supcmornputing ‘&?9,pages 540-550, lteno,
NV, Nov. 19$9.

[5] J.-D. Choi, B. P. Miller, and R, H. B. Netzm. Tahniques for debugging parallel programs
with flowback analysis. ACM Tmn~actions on Proo~mmirAg Languages and Sptems, 1991.

[6] A. Dinning and E. Schonberg. An evaluation of mollitoring algorithms for access anomaly
detection. Ultracomputer Not{’ 163, Courant ]nrititutc, New York University, July 1989.

[7] A. Dinning and E. Schonlwrg. An empirical comparison of monitoring algorithms for access
anomaly dctmtion, In St cund A Chf SIGPLA A’.Sympwiurn on Principles 45’Pmctiti of Pamlh 1

Prqmmming (PPOPP), pagm 1-10, hfar. 1990.

[H] L. Larnport. IIw to rnakr a multiprocessor that correctly ~xecutm multiprocow programs.
IL’L’L’Trarwacfiorw on (’ompulcm, (~-2 R(9), St’pt. 1979.

[9] S. L. Min and J.-1), (’hoi. An diicivnl cache-bawd armwi anomaly drtectioll whvmc. in f’rw.
of th~ ~th lrttcmativriul (’onj~ w 1M%on Amhilt ctuml ,Supporl jor Pmgrwmming Lunyuaym and

Oprnting .SWICVM,pitgwi 235 244, Palo A!to, (’A, Apr. 1991.

[10] R. II, 11. Notzm and H. 1), hlilkr. I)dwl ing data ra( m ill paridlcl program t’xrcutions, III

i), (Wmtor, ‘l’. (;rws, A, Nidau, iInd 1), l’adua. dit(ws, Lflrlguayf’s a!d f’otq~ikrw JOII

/Jardlf 1 Computing, hll’1’ I’rw+, 19!)1, Also ill Pmc, of 1/1(YITfM’orhtlop 011 Pmlg, I,(JllyN,und

(Jmqu’1( m jor I)umlh 1 ( ‘ur~q~uliug. Irvine, ( ‘A, (Aug, 1!)!)()).

I[i



Block-Structured Control
of Parallel Tracingl

Cherri M. PMeakc
(Vkiting Scientist, CornclJ Theory Center)

Department of Computer Science and Engineering

Auburn Univem”ty, Alabama 36849
email: pancakeOducmx.au burn. edu

Deopite the increasing attention being given to the design and implementation of parallel de-

buggerc (me [19, 12]), UUM continue to be dimatidkcl [15, 13, 3]. Some of the criticisms refiect the

technological difhcultien of monitoring parallel execution in norm-intruoive ways, or of reproducing

behavior in an inherently unmtable environment. Other complaint-, however, addrem a more funda-

mental problem: providing execution information that relateo meaningfully to program development

activities.

Techniques for portraying parallel behavior graphically have been the focun of a number of recent

rcaearch effort- [18, 20]. To date, however, little -ttcntion has been given to the problem of how

debugging tool~ should support intcrac~ion with the u-er. Eximting breakpoint-style debuggers (e,g.,

Intel’s IPD [10], CONVEX’O CXdb [1], or Sequent’e Pdbx [23]) rely on cxtcnaiono of oerial debugger

technology. The uoer manually opecii% where execution -hould be halted or monitored, typically

through breakpoint (positions in the instruction rtl’cam where procctsing sbcmld halt), watchpoints

(data elcmcntt whose values should be monitored, with execution halting when the value i- touched

or if a specific condition is met), and/or tracepoint~ (irmtruction or data locations whoce access

should trigger generation of a mcuage), Trace-hM14 toolc, M the term indicates, rely on just

the traccpoint mechanism (e.g., the trace analycit fruiliticn of SCHEDULE [2], GMAT [22], lBM’a
Parallel Fortran[8], CONVEX’m CXpa [6], or Paragraph [7]); during execution, mcmagc- arc logged

to a trace file for real-time or pott-mortet+l analysit. The dicadvantagc of this approach in that

the user cannot interact with or ●lter program cxecutiol] On the other hand, the coftwarc hookn

required to implement tracing arc relatively straightforward, ●nd can be irmertcd automatically by

the compiler (e,g,, CXpa) or in a preprocessing step (e.g., SCHEDULE).

Regardlcu of the mechanism uted, the user i- confronted with an all-or-nothing oupport mituation.

If monitoring I- controlled by automatic inntrumcntation or feature- in the run-tilne library, copiouo

amounts of data are generated, much of which may be irrelevant to the programming tack at hand,

In contr-t, manual control over monitoring rcquirm that tile ucer mpecify whmc information ~houlcl

1



be gathered; this entuih predicting what data will be uuful and at what locations, and then either

adding new ●tatements to the program (which will need tc be eliminated later) or issuing commands

at run-time (which may be dit%cult to duplicate in a subsequent aeaaion).

Thin paper wggeats a compromise ap} roach, whereby the user and tool collaborate to eatabliah

an optimal level of instrumental ion for a given program and tracing task.The user indicates very

generally the type of information desired and the areaa of the program for which trace records

rhould be generated, by annotating the block-ctruclured organization already present in the source

code. Since the specifications are tied unambiguously to program -tructure, the appropriate software

hookmcan then be inserted by a compiler, preproc-ing tool, or the debugger itself.1 Although the

techniquu are described in terms of truing tools, they could & be employed in breakpoint-style

debuggem if rudimentary murce-code anaiysis facilitia wereavailaole.
The proposed ntrategy ●xplots three concepts which have been largely neglected in the paat, but

could go a long way in making debugging tools more palatable to the user cornmunity:

Flexible ways to limit the potentially huge amount- of data generated during execution of a
8cientific application.

Clear correlation of dynamic/multi-stream behavior with the statir./single-stream program
manipulated by the user.

Adaptation to changing requirements ~’uring the program dwelop,ment cycle.

The scheme ia baaed on user-delkd eeen: qio~s, used to eetablish the portions of execution during

which events are reported, and ewemtkvelq which determine the typea of events to be monitored

within a region. The two orthogonal controlc interut to provide flexible control over monitoring.

The advantage of this approach derive from its clear relation-hip to programstructure, The model

for specifying trace output matchemthat UC.4 for program code, ao it ia e~ier for the programmer to

arrive ●t a uneful trace. The reduction in the number of event recordt alm makes true interpretation

faster,

The discumion begin- with an analysia of the requirement for progrnm behavior information at

different pointm in the development cycle. Thi- utablishm the n~ for independent Ievelt of trace

mpport, outlined in the next cection, The ~tion which followmde-cribea how the scope of tracing

can be varied to fit cyclic pattemm of debu~siv~ and program analysi~. By way of example, the

region and level mechanisms are applied to ● program written in PCF Furtran[14],

Requirernentu for Program Behavior reformation

in Figure 1, the development cycle for parallel applications typically begino with

a correct wisl vertion [19]. The programmer has a general idea of which portion- of the program

might be performed in parallel, but it is not ~!ways clear if Parallelisation will be co~t-effective.

With the help of ● profiling 100I or hand-cdd instrumentation, timing -!atitticm are gathcr~d LO

drterminc which of thrme●re- are sufficiently culll~}lltr-intenniveto warrant the efbrt of re~tructur-

2



Correct nrid varsion

1
1. Identify candidata for parallelisation

1
2. Parallelhe candidate portions of code

1
3. Debug paralleliwd code

1
workingparallelVenion

1
4. Evahmk perforw of parallel code

5. Tune perforrn&e of parallel code
1

6. Debug tuned code

1
7. Evaluate performance of tuned code

1
Acceptable parallel veraiom

Figwe 1. Deselopmemi C@e for Pamllel Scieniijlc ,dpplicatiorn

ing. Parallelisation then beginw Aa new structures ue added to the program and old ones modilled,

the code is tested to determine if the ruulk match those obtained from the aerial baseline. When

they diverge, ● period of cyclic debugging intervenes.Thit alternation of tetting and debugging

u neceuary even when software tools have been used to guide parallelisation activities. Once a

functional puallel version hcm kn achieved, ik performance can be tuned to maximi-e speedup.

The tuning proceamoften remdti in the ditcovery of additional bugs, precipitating new bouts of de-

bugging activities. Eventually, the programmer ia satisfied that further improvements are impomible

or unprofitable.

Execution tracing, aa a sourceof dynamic information on program behavior, is potentially uwful

●t all stagem in the developr ~ent cycle. Although certain steps are repeated more than once (aa

nhown in Figure 1), they may L- grouped into four categories of activities: performance profiling,

debugging, benchmarking, and performance tuning,

Prior to initiating paralleli~ation, the programmer neerh a high-level pm~le of computational

activitiw in order to determine where to focus efforh, The principal requirement here in timing

information, which can be ud to confirm or contradict intuitive notions of program hot-mpot~, Am

a minimum, ●ntry to and ●xit from all u-r-supplied program unito -hould be reported so that timing

statistic- can be calculated and compared,

As parallelism is introduced, run-time errors will surf~ce. In dehuggin~, the primary concern i to

determine where program behavior doca not match that ●xpected by the programmer. Becmmethe

program is thought of u ● wquence of manipulatiorm on data mtructurea, muchM multi. dimensional

mrrayn, the programmer UUr- correctnem by tracking changm to thou mtructuren, In parallel

aectionoof code, thio activity taku on an added dimen~imr: tracking the order in which pmdlrl

proces~ uceu the data. Not only munt value changeuhe noted, but ●l-o the sourceof eachchang~

3



(i.e., which procem made itand at what point in it- activities). Determining acceas order often

entaila the analysia of synchronisation evenk, such aJ which procem entered a critical section last.

Once all obvioun buga have been eliminated, tracing can be ud to determine the effective-

n~ of paredlelisation atTortBin krma of @ormance. Benchmarkiv requires a finer granularity

than subprogram profiling. Aetivitiea within the paralleliaed section of code are timed, to verify

that parallelism hax achieved some degree of speedup and to ascertain the poaaibilitieafor further

improvement. Programmer are concerned with quantifying the execution cost or benefit of each

parallelising transformation. Moreover, they draw a distinction tdween the sy~tem overhead in-

volved in starting up and terminating proccsas (referred to here M @em costi) versus that incurred

when proceaw ~ idle because of barrier wait-, failure to obtain locks, ●tc. (waiting coJti), The

former repreaenk the fixed c-k associated with parallelism, while the latter can be manipulated

— at Ieaat indirectly — by the programmer.

During tuning, the primary concern is to identify situation which can be improved by code

manipulation. The programmer needs detailed information on load balancing: the order in which

work io diatrikmted, time required to distribute shared data, time spent by each proceamat a barrier,

●tc. Since the programmer must rely on this data to fine-tune the degree of paralleli~m, the opecific~

of which work (i.e., which loop iteration or other subtasks) WM auigned to each procem is also

important. Finally, aJ tuning modifications are made to the source code, additional benchmarking

io nded to verify that tbe timings improved or to compare the ●ffects of different tuning strategies.

Matching TYace Information to Programming Activities

A recent mrvey of the trace facilities available with IBM’s Parallel and Clustered Fortran compil-

●m [8, 9] revealed that uaera are remarkably unaware of the potential of parallel program tracea [21].

Many programmers, for example, who employed tracea for benchmarking or performance tuning

activities had never considered using them to ioolate program errors. Other- undere~timated their

reporting capabilities, resorting to hand-coded in~trumentation to acquire data already available

(albeit ohecured) in the trace filem.Thio situation remdk in a great deal of unnecatmaryprogrammer

effort and may introduce new sources of error which are extremely difficult to iacdate,

The extremely large quantitia of data generated for a full program trace are daunting to mrmt

programmer, In some caaes, there are mechanimnaavailable to reduce trace volume; CXpa, for

●xample, SIIOWSselective profiling at the routine, loop, or parallel region level [6], while IBM ‘n

trace facility offer- nine levels in a number of permutation [8, 9]. Usern claim, however, that the

mechanima are unusabie, either becauaethey are inappropriate for the need at hand or hecauoe

their uae io incomprehensible or inconsistent. Moreover, the type of information reported in moat

trac- reflects the requirements of systerna programmer-, not -cientific uterm. Much of the data

reflects system factor- that ●re irrelevant to program development, whilr common programming

neds are left unsatisfied. Consequently, ●xinting tool- are under.utilimd and under-valued by the

user community.

How can the cituation be improved? ‘l’he fir-t ttep it 10 organi~e the type of data reported in

order to correspond with typical programming activities, In our block-structured appromh, th~ typr

4



of trace record- generated ix controlled through tmce kvels. A level definm which execution-time

events are of interat and thould be re~rted; it tber<ore functions ama masking mechanism to

reduce t~e amount of trace output. We propose five IL/els, reflecting the mod common uaeo for

trace,:

● to establiab timinp for entry to and exitfrom subprogram units (PROFILE)

● to isolate the portion of the program where an error hamoccurred (DEBUG 1)

● to identify the emor and determine the efficacy of repaire (DEBUG2)

● to tune program performance for timum efficiency (TUNE)

● to benchmark and compare program performance (BENCHMARK)

Normally, one level will apply k the entire program, reflecting the activity in which the programmer

is engaged, b it debugging, tuning, or performance analysim. In come caoea, however, it may be

deeirable to combine multiple leveln during a mingleexecution. The ●ffects of each level are described

in relation to typical parallel language constructs, amplified by the concept of user-defined trace

messag= (mbitrary text emitted in the trace file at the specification of the user).

The rexulti of applying levels are illustrated by a brief program for tbe computation of w with the

rectangle rule (Figure 2), written in PCF Fortran [14] and adapted from tbe example in [11]. The

trace output nhown is generalized and doa not reflect any particular trace format. The columns

present timeetamp, proc~ lD, eource code location, and minimal meuagea, respectively; ouch

information u compatible with most exieting formata, u well u tbe mqjgeatiom for ● standardized

trace format nummarised in [Iflm

PROFILE: This level results in a minimal number of trace recordm(Figure 3). It in in-

tended primarily for summarizing the amount of time cpent in each program unit (main pro-

gram/-ubroutine/function, or finer-grained block~ of code), u im indication of where parallelisation

or improvement etTortoshould be directed. Tbe flow of programcontrol into and out of each unit

ix reported in the trace file. User-defined trace memagee may identify the organisation of logical

activities within ● unit, m these are recorded M well.

DEBUG1: Thi- aho reaultm in a restricted number of trace records (Figure 3), and imparticularly

useful Juring initial attempts to localise a program error. Only events marking the very general

progreu — or lack of progrem — of Parallelism are reported. Thus, the umeri- able to obtain an
overview of which portionm of the program ●xecuted and in what general order they occurred,

For parallel 100pa, the trace records include each proceedm arrival at the start and ●nd of the

cormtruct, plus any wait- cauwd by unoucceaaful attempts to enter critical aectiorm Similar informa-

tion ix reported for parallel aectiorm, ●xcept that wuta occur due to the explicit ordering of sibling

eectiorm Uwr manipulation of -yncbronisers (inch u lock and event variable-) i- aho reported in

termo of urmucceaafulatternptc which mult?d in wait-. “-’hisinformation givee the programmer

an extremely rough idea of the extent to which contention may be affecting program behavior,

Subroutine-level parallelism is ●l-o traced in terms of coarae-grairred activities: the dart and end of

each process% work, and the sat isfaction of harrier synchronisation, Accem to shared variables is

reported only in the moot general way, via !intnidentifying which ones were ~cemed by eachprocesu,

EnLry to and ●xit from subprogram (whether the invocation wereaerial or in parallel) continue to

5



1

2
3
4
6
e
7
e
e

P~3AH PI
DO 1=1, S

3EAD(*, *) mcs
CALLIHTEG(BRECS,R2)
WBITE(*, *) ’lusb@r of roctanglos: ’, STLECS
URITE(*, *) JInmbu of proceams wm~lablO:’,HPRTOT
URITE(*,*)’Approximation: ‘ORE

ESD DO
m

10 SUB30UT11E ISTEG(S,SUM)
11 GATEADWP GUAItDS(SUH)
12 Sm ■ 0.0

13 USLOCE(ADDUF)
C puallal rmgion and scoping daclarmtlonm

14 PARALLEL
16 PBIVATE(PSO?I,H,I)

C puallol iaitializmtions(redundantly.ment.d, once par procom)
la Psun = 0.0

17 m s I.O/m

C pamlhl work (group8 of iterations ●xocutod by ●ach procamm)
18 PDO IIDEI=l,I
19 1= (ISDEX-O.6)W

20 PSUM = Psun + 4 o/(1.o+x*x)

21 SSD PDO
C reduction ●xocutod onto por procoss and ona procom -t a tirna

22 CEITICA1.SECTIOI (ADDUP)
23 SW = s~ + H*psm
24 ESD CRITICALSECTIOI (ADDU’P)
26 EID PARALLEL
28 RETUXS
27 EID

Figure~. Ezample PCF-ForimnPwgmm

bet?aced in order to indicate tbe general flow of program control. !.leer-dehned trace mesmge~ are

recorded aaweil.

DEBUG~: Like DEBUG1, thu level i-intended to facilitate the iechtion and correction of

programerrorm.ltprovidee the level ofdetail most likely to reveal the sourcea ofbehavioral anomalies

(Figure 4), but does not include performance-related information. Since DEBUG2 hu the potential

for generating considerable volume, it will be most ueeful when restrickd tosmnll portion~ of the

program, mrchasthome mrmpected (through analytis ofprevious DEBUG l-level output) of containing

anomalieo or thoee where code moditicatiorm have been made,

‘hcingf oraparallelc ormtructreflects itnprogremion through execution: conmtructentry, priva-

ti:ation ofvariables, ~tart of each procem’s work, alignment of iteration group- woecticmq, end of

each proceu’s work, ●nd construct exit when the barrier immtisfied, Whe)l critical mctimr occur-,

detailed information on thim is reported M well, including mccemful and urmuccewful atterllptn to

6



PMIPILE 1W02 DEBUG1 1ov-1

Oooooooo 1 1 BEGI1 PBOGIAM
00000041 1 10 = IITEG
00090249 1 26 EXIT IITEG
00000321 1 10 ~ ISTEG
~OS49 1 26 EXIT IITEG
00000630 1 10 EETEB I~G
00090812 1 26 EXIT IB’TEG
Oowoaea 1 @ En PEOGMH

00000000 1 1
000000411 10
000000421 14
000000422 14
000000433 14
00000C472 18
000000481 10
000000483 18
000002021 21
000G02033 21
000002043 22
000002262 21
000002491 28
000003211 10

. . .
Oooooeoe 1 0

BEGII PILOGRAH
EETER IETEG
SHARED (SU?I,ADDUP)
SEARED !SUM,ADDUP)
SHAEED (SUH,ADDUP)

BEGI1 PDO
BEGIE PDO
BEGI1 PDO
EID PDO
UD PDO
WAIT CRIT SEfi
E3D PDO
EXIT 13TEG
EITER IITEG

E3D PBOGMM

FVWV3. T,wce Oulpwtjor PROFILEand DEBVGl Leveb

obtain ucen, uwell as exit fiomthe section. The level ofdetail ixmimilar for pamllel sections, ex-

cept that procux suspension and ruumption, duetoordermd execution, isreilected. All umr-defined

synchroniser operations are now reportd in the trace, whether or not a delay wax involvwi. Thus,

thecreation, termination, and freeing ofs lock are reported u well u ●ttempts to gain control of it.

Thti fine level of granultity allows the progmmxner to observe ●very tr~mction on tynchronisc. s.

Subroutine-level parallelism ix also trud ●t tbe lowat level manipulatable by the programmer:

proceu creation and termination, otti and end of work, arrival ●t barriers, and barrier tstis~action.

Updata and ucewx to Ati data are reported in termx of the value assigned or read Finally,

subprogram entry/exit -d ur-defined true magm ue ctill recorded.

TUNE: Unlike the DEBUG levels, TUNE u intended for programx which function correctly (or

●ppeu to function cor. xtly). Thin level reports on progrun performance (Figure 4), Ipecific-lly

three MFU of performance which u b tuned by the programmer to achieve maximum eficiency.

Itmfocus, therefore, u the “variable” overhed due to poor load balancing, lock contention, etc.

!nforumtion on the “fixed” coch incurred by the syctem during proceu initiation and cleanup will

be reported at the BENCHMARK level,

Thc evenm of interext for puallel loop and asex construct~ inc!ude the start of the construct,

startof each proc-’s work, ~ignm~nt of iteration group or caoex, termination of each procem’c

work, and ●nd nf the construct, Prom this inforirmtion, the proi ‘\mmcr (or a trace ●nalysis tool)

can determine tr what intent “slow” or improperly bahnced proc~ are provok: ng long barrier

waits. Be or the cur ●lIO obrve the flectt cf ●ttemptn to turw lnop/cection~ performance? by

controlling itmation group9, ●tc, When the conmtruct includm cynchroni:ation conatructfi (critical

ocction or ordered caM ●xecution), this i- trsccd 100, u described blow for ~ynchronirwrs ‘rhr

record produced for ~ubroutin~l?vel puallelinm inctlld~ the start and ?nd of rach prorcm’n work,

urival ●l barriers, and barrier tatisfartion In ulditinn, ihc diatrihution of chard data in rrp{)rtmi



00000000 1 1
00000041 1 10
00000042 1 11
00000044 1 12
00000044 1 13
00000046 1 16
00000047 2 18
0000004B 1 18
00000048 3 18
00000176 2 lB
00000202 1 21
00000203 1 22
00000203 3 21
00000206 1 23
00000207 S 22
00000200 1 24

BEGI1 PROGFLAH

EITEB IUTEG

GATE (ADDUP)
SEW (sum = 0.0)
DTLOCI (ADDUP)
PRIVATE (PSUR,B,X,16’DEX)
BEGI1 PDO (IIDEX = l.lO)

BEGII PDO (IUDEX = 11,20)
BEGIU PDO (16DEX = 21,30)
BEGII PDO (IBDEX = 31,331
E6D PDO
E6TERCRIT SEm

E6D PDO

SEA~ (SUH = 0.7880)

UAIT CRIT SE~
EXIT CRIT SECT

000002103
00000211 1
000002143
030002173
000002183
000002262
000002272
009002912
000002372
ooodo2382
00000242 1
000002491
000003211

. .
00000808 1

22

26

23

24

26
21

22

23
24
26

26

26

10

0

E3TER CRIT SECT
UAIT BARRIER
SEARED (SUH = 2.0136)
EXIT CRIT SECT
WAIT BARRIER
El’t)PDO
E6TER CRIT SECT
SHA~ (SUM = 3.1410)

EXIT CRIT SECT
WAIT BARRIER
PASS BARRIER
EXIT IETEG
EETER IITEG

MD PROGRAH

F~m S, k.ce Output for DEBUCt

so that the programmer can observe the delays auociated with data distribution.

For uacr-defined -ynchronisers, tracing atthislevel reports all accesm, but not creation/termina-

tion(which cannot betuned for efficiency), Succeaaful and unmcceufulattcmptc to obtain lock-, lock

relem, event pmting, and ●vent waitm are included. The programmer thuIcan olmrve first-kund

thecausa snd cataof synchroniser contention. Entry toarrd exit from functions andoubroutines

arc not reported -t this level, buL user-defined trace mcasages are included for the convenience of

programmers who use this technique to nmrk or measure general progr~m activities.

BENCHMARK: The benchmarking level isintendcdto provide information that will b~uceful

in I he analysis off j-tern (aJ oppoad to program) performance. Ito eventm report on symtemrelated

ow~head wr.haxproccxa -tart-up time. The data WIII Ao be of interest to programmer- who wish

tocompam the performance of alternative program versiorw iB detail — for ●xample, to determine

where the cmt breakoff point i~ between Iooplcvel md -ubroutine-level parallelism for ● particular

=tion of code.

~uingfor ~rallel looporc= constructs nowrcflects thecymtcm otartup timcincurrtcl bctwr~n

●ntry to theconItruct ●nd the initiation ofprrmsa work, M w?II any lag tire? bctwc~n the arrival of

the Iut proceaa at the barrier and final barrier satisfaction, The full cet of trace rccordI therefore

includcm corwtruct start, proceax creation, start of process’o work, ●nd of procenx’n work, ●nd rach

proceu’- arrival ●t construct ●nd. For user-defined processes ●nd ~uttroutinwl?vel parall~lism, trarirrg

r~ords the cymtem overhead for prcrccax manng?mcnt activitim. ‘rhcw inclurl? th~ amount of tirrw

spent originating and terminating proccaw, aa WQII u th~ time elapiwd b?twc~n arrival of thr Iarrt

proceax at ● barrier and barrier mtiafaction, The tracing of lock anti ev?nt Dyr)cllrr)rlis~tiolln irr

identical to that performed under TU NE, since it allown the rl~t?rmination of how murh nyttcrrl

cwrhead timt FIapaet between, say, the rcleaac of ● Iorh and th~ rc-activation of a w~ititlg pr[wrnn

ARain ~uhpro~rarn ●ntry/exit are i~nor~d, hut any un?r drlirwd trm? rrwnnag?n nre reporte,l



00000000 1
0000004: 1
00000046 1
00000047 2
00000048 1
oooooo4e 3
00000178 2
00000202 1
00000203 1
00000203 3
00000207 3
00000200 1
00000210 3
00000211 1
00000217 S
00000218 3
06000226 2
00000227 2
00000237 2
00000238 2
00000242 1
00000322 1

,.
00000898 1

Tom loval

1
12
16
18
18
18
18
21
22
21
22
24
22
26
24
25
21
22
24
21
26
12

9

9EG11 PROGRAM
SHARED (sm,ADDUP)
PRIVATE(PSUH,EI,X,IIDEX)
BEGIB PDO (IBDEX = 1,10)
BEGIE PDO (IBDE.2= 11,20)
BEGIB PDO (IIDEX = 21,30)
BEGII PDO (IIDEX ■ 31,33)
EBD PDO
OBTAIS (ADDUP)

EBD PDO
TRY (ADDUF)
RELEASE (ADDUP)
OBTAII (ADDUP)
WAIT BARRIER
RELEASE (ADDOP)
WAIT BARRIEB

EBD PDO
OBTAII (A.DDUP)
lELEASE (ADDDP)
dAIT BARRIEE
PASS BARRIER
SHARED (SUIII,ADDUP)

EBDPROGRAM

BEICEMARK Iovol

00000000 1 1 BEGII PRUGRAH

00000042 1 12 SEARED (SUM,ADDUP)
00000044 3 14 BEGII PAULLEL

00000046 3 1S PRIVATE (PSU?I,E,X,IUDEX)
00000046I 18 BEGII PDO
00000~472 lB DISPATCEPDO
00000048 1 18 DISPATCHPDO
000000483 18 DISPATCHPDO
000001702 21 COMPLETEPDO
000001702 18 DISPATCHPDO
00000190 1 21 COMPLETE PDO
000001973 21 COHPLETEPDO
00000202 1 21 DOEE PDO
00000202 1 22 OBTAIE (ADDUP)
000002031 22 EETER CRIT SECT
000002033 21 DOIE PDO
000002063 22 TRy (ADDUP)
000002073 22 WAIT CRIT SECT

0000020E 1 24 RELEASE(ADDUP)
00000200 1 24 LAIT CRIT SECT
00000209S 22 OBTAIB (A.DDUP)
000002103 22 EBTER CRIT SECT
00000210 1 26 TEST BARRIER
00000211 1 26 WAIT BARRIER

.0.

00000000 1 0 E3D PROGUH

Ftgure~, TkeOuiputf orTUNEandBENCHMARK

Restricting the Scope of Ana!ynis Information

~acing lrvelo alone will not reduce to managetible proportion the amounl of trac~ data

generated bymcientific applicationt, ReoearcherI at CON VEX, forexample, found lhat a l[)-minu Lc

program rungener~ted l,3gigabytex ofproflling otatioticI [6] (jrganising levelnin tc:illmofprogranl

development activitim decre~s the number ofrecordo that areextrnnermm to thttuk at hand, hut

it should be clew that Iargt tracea will otill result.

Oneup?ct ofprogram development that mcritsclow attmrtioninth~t r?tp?ct i- th?hicr~rchical

●pproach employed by moat uc~ro. Empirical nturli~~suggcit that programnwr~ ‘funnel inn on the

rnd~, ttarting with ● high-level view of overall program behavior and progrcmiv?ly nlt~ving t(l llll~rr

Dv,,iflc l~v~l~~fd~lail [4, h], Thl~prf]r?~Urr,which allnwsth~ progrnlllnwr tt~ puloffcoIrIpl?x innll?n

u hmgaa poaaihl?, mimicsth? top-down appmarh to ~Jr{~Rramd@vpl[)~]nl~nt ‘1’ake, forcxntrll)l~, thr

way han[!. codd irrntrunwnt~tifjn is addrd to a pr~larnlll tl~ d~trrt thr sour(r of ~11 ~rr~~r (k’igllrr

2) Th~ pr(tKrnnlm~r first irr~cntigatrs K?rwrd h~hnvi(lr nt th~ IFVFI tlfnuljpr(~grnlll llnit~. ‘Iihr fIWIIII

in th~n narrowml t!, a particular lJIIwk of rode F’itlally, cod~ tll{difir~ti(tll in Imrrl,rlrw[l nl lhr

IFVQI of irldivirlunl ntat~lr)rntn A -inlil~r pr(~rmlilre in f(jll(~wwl fIIr lmnchtr~nrhln~ mIIl prrf,trlllnn(r



1. Identify gener~l area of trouble

2. Exa~ne code

3. Add coaregn$ecl instrumentation

&
4. Examine rexults

1
5. Add finer-grain? instrumentation

6, Examiie reeults

1
7. Modify code

Figure ~. Hiemmhical AppmacA in Hand-coded Debugging

improvement utivitia. In pm-improvement benchmarking, for example, the first order of buoineoo is

determining which subprogram units account for the greateat proportion of execution time. Within

those units, analysi~ ix then refined to pinpoint the areas which have the greatest potential for

yielding improvements.

To support this w,~proach, ● second mechani~m interacto orthogonally with the trace level con-

tlols, Thee regiow limit the scope of tracing, or the period of time during which ●vent records

●re gcneratd. Becauae the program already represents a block-structured expreasiorl of problem

logic, it maka eenae that truing ecope relate directly to source code orgmisation. A region, there-

fore, corresponds to a subprogram unit (SUBPRC)CRAM and IGNORE controls), a block cormtruct

(CONSTRUCT), or an arbitrary area (BEGIN and END) The first three control static (lexic~l)

Mope, while the other two delimit dynamic region-. The number ●nd nature of the regiont were

establitbed through extermive interviews witL scientific umer- [21].

Each type of region i~ described below. For convenience, the controls are shown in the form of

compiler or preprocessor directives. It is intended, however, that regiono be specified graphically

through the uae of a program edito( or other interactive tool, Facilities for highlighting regionI with

mhading or color will allow tbc uoer to pinpoint the areM of interest quickly and accurately. They

will ●lso emphaaise the distinction between “~tepovern (~tatic) and %tepdown” (dynamic) tracing

of subordinate program modules.

SUEIPROGRAM: The programmer U-M thin region to indirat~ intermt in a particular oubprw

gram or portionc thereof. Thcing will be active during the executimi of ●ll statement within the

region (in this case, after the occurrence of the T$SUBPROCRAM directive). ltt effect in limitml to

the immediate static (lexical) Kope; that i-, tracing is deactivate at callE 10 nuhorrlin~tr functinnn

or subroutine, For exmple, tht region defined in Figure 6 bcgin~ in thr middle of thr ~ubrouti~~

●nd encompaaa~ dl subsequent statements, but does no~ “step down” 10 includr the cod? executed

by the invocation of IN IT(; LX,

CONSTRUCT: This region provides flnm granularity than SIJIII’N()(;RAM, corrmpt,llditl~

to tht execution of ● proRrarn block. Block cotmtrllrtu inclurtr all l)l(jrk.ttrllctl]r~[l rlrnmntn ill tlIr

I-nguagc, hut typically only parall~l blocks (~.K., Imrmllrl Ioopm sod n~cti(~lln) nre (I[ int~rrwt (Itr

tracing, Slnr~ thr proxramnwr UWD CO NS’I’I{U(YI” tI~ indirmt? ititrrmt it] a lmrti~ulnr rtlllntrllt,t ,11

I ()



SUBROWIIE IIIT(SUH,l) SUBROUTINEIIIT(SU?I,H)
... ...
sun = 0.0 sun = 0.0

C$ T$SUBPROGRAH C8 T$COISTRUCT
+

PARALLEL DO IPLAIE=l,l PAkALLELDO IPLAHE=l,E

PRIVATE(PSUH) PRIVATE(PSU?I)

PSWH = IIITGM(IPLA.IE,PSUH) PsUH =l-IPLABE,PSUH)

EID PARALLELDO EBDPARALLELDO
UILOCE(ADDUP) UJLOCK(ADDUP)
. . . . . .
RETURJ RETuRl
EID EID

Figuw 8. Ezamplen of SUBROUTINE and CONSTRUCT Regioru,

group of constructs, itstied ix limited to the immediate ttatic scope. In the example of Figure

6, tracing begins just prior to execution of the PARALLEL DO and continues until the loop haa

terminated; it i~ deactivated during tbe invocation of lNITGLX.

BEGIN and END: The user can alm define arbitrary regiom that are not rcotricted to con-

struct or mbprogram boundaria, and that reflect the dynamic 90W of program control through

mbprograrns. A REGIN/END region effectively toggles tracing on and off, M mhown in Figure 7,

Note that in this case, trace r~ords are generated from the -tart of the parallel loop until after

the UNLOCK operation, including during d] mbprograms invoked within the ~cope of the region

(lNITGLX and any subordinate it might have), Due to the nmting of subprogram during execu-

tion, a previou- BEGIN/END region may he active when a new region in encountered, although it

will be more comrrlon that regions are closed for the duration of -ubordinate routine-, M deccribed

below,

SUBROUTINEISIT(SU’M,H) I SUBROUTINEIZIT(SUH,II)

[
UILOCK(ADDUP) I

C$ TOEID
.m.
RMwRm
EDD

lhgum 7, Eaample8 of Rl?GIN/h’NI) and

PARALLELDO J~I,1

.,.
EID PARALLEL DO
RETURB

EID

IL’NORH Itcgmnt,

t~rrtial for gerlrrnting cormirlerablr amountu of tr~rr dmt.n, AN I(; NOI{E rrgi~ln ttlrreft)rr ~)fl’rrn i,

convenimt mrchaninm for temporarily cloairrg a r?gi(nl for thr durntioll ~)f a nuhpr(~~rnlll, lly nlm

11



ifying that a subprogram should be ignored, the programmer disablea all tracing at that level of

invocation; tracing is resumed after return to the caller. In Figure 7, any region which wss open at

the calling site to lNITGLX will be temporarilyclosed during execution of that mbroutine. The

scope of the IGNORE region i- static, so tracing will again become active within any of iti sub

ordinate routinas. The tiects of this region are antithetical to those of SUBPROGRAM; where

SUBPROGRAM initiates statically-scopec! tracing at the indicated point and continues until the

end of the subprogram unit, IGNORE disables tracing for the same area.

It u also possible to combine regions of different typa. Their interaction provides a tight control

over exactly which portions of code are traced, Returning to the CONSTRUCT region in Figure

6, for axample, the specification of a SUBPROGRAM region containing INITGLX would have the

effect of supprdng all records except those in the mbroutine or in the parallel loop.

Conclusions

Structured programming techniqua offer the scientific programmer waymto make mource code

structure reflect the underlying denign logic. As s result, it hss become commonplace for umermto

●pply cyclic and hierarchical ●pproaches in code development, Bloch.structured tracing capitalises

on this olmervation. It allows the programmer to control the number and type of run-time event- in

a structured fuhion that reflects both murce code organisation and changing requirements during

the program development cycle.

The cyclic and hierarchical ●pproach- interact throughout the parallel program cycle, Most

programmers develop or paralleliBe their ●pplications one section at a time, A [u]] cycle— converting

code to parallel form, testing ●nd debugging it, benchmarking the results, then fine-tuning it it

to uhieve the best possible performance — is applied to a subporlion of the program. Once it is

complete, the programmer moves on to another uea, typically returning only ifa latent bug emerges

or if later work generates ● new idea for performance improvement, This suggests that tracing tools

should provide separate controls for (s) indicating the program area of current interest and (b)

identifying what type of information should be reported for that ●rea. ‘I’he controls ●hould be essy

to ●pecify ●nd easy to change,

The orthogonal true ●nd region mechanisms provide direct support for this approach, Hier-

●chical patterrm indicate that at ●ny stage during prugram development, a single trace regiml or

collection of trsce regions is likely to be of interest for a length of time, him that reason, thr region

mechaninm io potentially fine-grhined, while levelprovides a simple, coarsercontrol. Cyclic p~tterns,

on the other hand, indicate Lhat varying collections of trace data will b~ demirw.1for th~ refiion M

the user progreues through different programming tuks, By organi~ing tr~c~ events ncrordin~ LU

typical activitim, the level mechanism eliminates thr tedium of discarding irrdwmnt rmordn Mid

cl~rlfles th~ contribution of earh record type, ‘l’ngctherl the two control- intrr~ct to mnkr pnrnllrl

d~hu~ing tocdo●asirr and mrm effertivc for usrr ●pplication,



[1] CONVEX ComputerCorporation. 1991. Comrez CXd6 UserJ#Guide. Convex Prem, publication
DSW-473.

[2] Dongarra, J. J. wd D, C, Sorensen. 1987. SCHEDULE: Tools for Developing and Analysing

Parallel Fortraa?rogruns. ln The Clnructetitics of Parallel A~otithrru, Jamiesou, et al., eds.
~IT PreM.

[3] Fox,C. C. 1980. Parallel Computing Comes of Age: Supercomputer Level Parallel Computa-
tion- ●t Calti. Concumvncy:F’ract& 8 EapeAmcc, 1 (1): 94.

[4] Gould, J. D. 1975. Some Psychological Evidence on How People Debug Computer Programs.
lntemmtimd Jornmalof Man-Machime Skdiq 7:151-182.

[5] Gould, 1. D. ●nd P. Drongow~ki. 1974. An Exploratory Study of Computer Program Debugging.
~urru~ Factors, 16 (3): 258-277.

[6] Hamen, G. J., C. A. Linthicum ●nd C. Brookm.1990. Experience with ● Performance Analyser
for Multithreaded Application. Pmtding# of Supcamputin~ ‘Wl pp, 124-131,

[7] Heath, M. T. and J A. Etheridge, 1901. Wcudizing Per/orrnwme of Parallel Progmms. Technical
Report ORNL/TM- 11813,Oak Ridge National Laboratory.

[6] IBM Corporation. 1990. CYwteredFortranLangua~eand Libary Reference.IBM Corporation,
publication SC2~0523-O.

[9] IBM Corporation. 1986. Pamllei F’ortrw Language and Libury Referwtce. IBM Corporation,
publication SC23-0431-O.

[10] Intel Supercomputer System, 1991. WSC/# and iPSC/88U JnteroctivePurdel Debupger Man-

ma[. Intel Corporation, publication 312043-001,

111] Jakob, R. 1090, Parallel Programming Model- for Shared Memory Multiprocessors, M,S. The~i~,
Department of Electrical mid Compuler Engineering, University of Colorado,

[12] McDowell, C, E. ●nd D, F, Helmbold. 1989. “Debugging Concurrent Programs.” Ai!M Corn-
pding Surweyq 21 (4): 593-622,

[13] Moriartyl K, J. M, 1989. Ptralkl Proceming of Large-Scale Application on Powerful Multiple
Proceuors. Mernational Journal oj Swpervornpukr Applicahonq 3 ( 1): 82-87.

[14] Pmsllel Computing Forum. 1990, PCF Fortrm, Version9,f. (Prepared for ANSI X3115)

[16] Pnncake, C. M. 1991.Soft#are Support for Parallel Computing: Where Are We Headed? f~orn-
wmnication.s of Mr ACM, 34 (11): 52-64,

[16] Pancake, C, M, ●nd l), llergmmk, 1990. DO Parallel Languages Respond to th~ Nmlu of Sci-
●ntific Programmer-? IEEE Computer, 23 ( 1): 13 23,

[17] Pancake, C, M,, 11,Clannon, S. Utter ●nd 1), Ilmnmark. 1991. Suprrmmputing ’90 lioh” Sm
●ien on Stanrtsrdising Parallrl ‘1’ram Fornmt~. ‘hchniral Itqmrt CI’(XI -’1’lt!]fl, (Iitrnrll ‘1’hmlry
Centerm

[lH]Pmwake, C, M, ●nd S, IIttrr. 1901. Dchunzcr Vinunlimnti,m, f,,r Shnrrd Mrnmry hf,,ltipr,,rrw
wlr-, In l/lph. /’~rJwrnanrr C’omputmo 1/, ml, M, l)uranrl Rnd F, IJl I)nlmghi, N[~rth lltdlntIIl,
pp 14s IN).



[19] Pancake, C. M. and S. Utter. 1991. “A Bibliography of Parallel Debuggers - 1990 Edition,”

A CA4 SIGPLAN lVoticc~,26 (1): 21-37. [The bibliographic databaac in available in electronic
form through the Cornell National Supercomputer Facility. For information, contact the author.]

[20] Pancake, C. M. and S. Utter.1989.Modelo for Visualization in Parallel Debuggers. Proceedings
oj Superwmputing ’89, pp. 627-636.

[21] Pancake, C. M. and S. Utter-Honig. 1991. Improving the Effectiveness of the Parallel Fortran
Trace Facility. Internal report prepared for IBM Palo Alto Scientific Center.

[22] %ager, M, K. ●t al.. 1989. Gmphical Afuliip~es#ing Analysis Tool (GhfA T). Technicai Report
UCID-21345, Lawrence Livermore National Laboratory.

[23] Sequent Computer Corporation. 1986. Pdbz Parallel Debugger for Sequent Svdem, Sequent
Technical Publications.



An Object-Oriented Design of a

Debugger with undo

RobBrfHood
w WW9*

)Giti- du%
0.- D. Mm&

c. CM M Pw

N. Wl- 0, Vti





1

.Puddu8&irm amoaloa’pmud
oontlnua( )
Wait( )
kill( )
paum( )
stopUithTrmoBit( ) tl pxduc
roadmom( ) , writ-( )

krwwti Pc, sP
blnotm



--
- lm~

bf’dqdfts llmorto, dolatio, . . .

-Otdlti
auto, provo, param(#), . . .

?

1

I



D



!!







o



. . .

pdo l-2,4
. . .
11 [L. oq.1) than

PO j -1,2

. . .

~lp,~,~

•ad~o
●ndlf
pdoj-l, i

. . .

●-
~lp,~,~

. . .

.-
. . .

1



doooblo procimion A(1OO, 100)
inta@r A-tag(O, 100, 100)

B(p(l)) - . . .
Gall Writtihak( B_tag(p(l)) )

m





Debugging with Lightweight lnstmmentation

Benjamin Chase
Robert Hood

Rice University

Abstract

As part of a debugger project at Rice University, we wanted to provide
support within our debugger for such operations as noticing modifications to
a memory location. Efficiency concerns led us to choose the technique of
automatically applying small machine code patches to the program,

We have experimented with this type of program instrumentation and have
demonstrated the feasibility of using it for the task of watching modifications
to memory. Our use of patches to monitor all stores to memory is unusual,
because of the large number of patches involved, In detail, we insert a
machine code patch for every machine instruction that may modify the
memory locations being watched. This action does incur significant costs in
program text space and running time, but provides invaluable functionality
within the debugger. Our method is especially appealing if appropriate
alternative support for data breakpoints is not provided by the operating
system or hardware.

Introduction

We are implementing a debugger at Rice University, In addition to the more
traditional operations such as location breakpoints of various kinds, we want
this debugger to have some support for data breakpoints. That is, we want to
be able to stop when some particuliw variable ocquires a value. At a basic
Imd, to implement data breakpoints without compilw support, the debugger
must somehow notice wh~m a machirw instruction modifies any of the
mrmory locations being watchcdi



and inspect the location being modified. Debuggers using this
implementation can slow the monitored process down by a factor of up to
20,000. For a program run of any substantial duration, when faced with such
a slowdown, it is usualiy quicker and almost as effective to simply add
printing and assertions to the source code, and recompile.

To avoid the ptrace system call, we instead construct an automated way to
insert code before every store instruction, and before every other kind of
instruction that could modify memory. The inserted code will check the
address to which the store location will write, against a table of memory
locations being monitored. If the address is in the table, some special action
will occur, such as pausing the program and signaling the debugger.
Otherwise, the program will proceed as it normally would have, without the
inserted code.

For our project, instead of actually inserting code before each store
instruction, we put the new code elsewhere and connect this new code to the
patch point with branches. Typically, one instruction at the patch point,
usually the instruction that modifies memory, must be overwritten by a
branch to the new code. This instruction is relocated to a slot in the new code,
At the end of the ~iew code, a branch back to the patch point completes the
installation of the patch. This is not a new technique, but its utility is often
overlooked. Our design is that of Kessler[Kessler], though some engineering
is needed to make our application of this technique appealing,

Architectural Requirements

This method relics cm the ability to confidently install patches to machine
code, ideally even without significant support from the compiler. There arc
several restrictions resulting from the requirement that machine codc patches
arc being used, In short, our method works best on RJ?C architectures, cm
systems that havu an obvious separation between machine code and data.

I’atching i~ difficult if mnchine instructions can be of different kmgths. A
uniform sizu of machine instruction is thti emiiest to handlv, whun irwrting
patches. Thv uniform instruction sizv simplifies thv dwwcling of instructions
on such nrchitccturw, Also, if thv branch instruction that is used to ruach thu
patch is h+rgc, and th~’ instruction that modifivs mumory is smnll, it nMy br
that many instructions surrlwnding thu small instruction must bu rc’lucntwl.
This incrwws thl’ complexity of th(’ ctisc analysis in tlw automatvd patch
installvr,



convenient. It is difficult to install patches if the branch distance is limited,
because space for the patch must be found close to the patchpoint, and
patchpoints will be sprinkled throughout the program. In this case, spaces for
patch code would have to be created (or reserved beforehand) throughout the
machine code, rather than in one large arena. Also, the particular branch
instruction used for linking in patches should neither require the
modification of any registers to certain values, nor as a result of its execution
m adify any registers (other than the program counter, of course).

Typically, it will be necessary to save some of the machine registers at the
beginning of each code patch and restore them at the end, without needing
any free registei”s a priori. This problem, which we informally call “getting
one’s foot in the dmr”, can be a puzzle on some architectures, but often there
is a solution, albeit contorted. On architectures that lack even a contorted
solution, it may be necessary to obtain some help from the compiler, such as
reserving a number of registers solely for use by the debugger, or perhaps
requiring that the compiler allocate for the debugger’s use a conveniently
located place for saving registers.

Narrow operand fields in machine instructions are problematic, if they must
be relocated. An example of an instruction that might need to have its
operand field(s) adjusted is a relative branch instruction. If it is moved to a
distant location, the obvious adjustments to account for this move might
overflow the operand fields. Even if a sequence of (possibly larger)
instructions exists that is equivalent to the relocated instruction, generating
this equivalent sequence greatly complicates the automated installation Gf
patches.

Branches with delay slots can also complicate the automated patcher. On
some architectures, there are restrictions against placing certain kinds of
instructions in delay slots,such as branches. If a store instruction had been
placed in the delay slot by the compiler, the automated patcher would
normally want to overwrite that store instruction with a branch. Instrad, the
automated patcher must use some more complicated strategy. Similar
complications occur if the patcher needs to ovcrwritu the delayed branch
instruction itsc’lf. Solutions to thtw problcrns, perhaps involving multiple
patches, such as thow described by Kessler [Kvsslvr], can probably be dmwlopud
for most architucturus.



may be that rm w:ite to that register save area occurs, If it does occur, it may
be the result of some subsequent SAVE instruction.

The simple wdution is to assume that this mcu.rrence counts as a
modification to memory. justifications for this decision are that the
modification may occur in some execution of the program, and that it is
unusual for a debu~ger to be placing a data breakpoint on a register save area.
If the user’s varjablc resides in an area that maybe overwritten by a register
window save. h? probably wants to know about it.

Operating Syst?m Requirements

The system under which our method will run should provide an efficient
‘way to install the patch~~. If we insist that the user must declare that he will
want data breakpoints before running the program, we can install the patches
efficiently, simply reading and writing the program. However, this situation
is very inconvenient for the user. To install data breakpoints after the
program has been started, the debugger must be able to write the text segment
of the running process, so that the debugger can install the patches after the
program has been star’,ed.

Under the Unix operating system, writing the text segment of a running
process is performed via the ptraceo system call, and each call is slow, A
straightforward implementation of the automatic patch installer will need to
perform many isolated single-word modifications, because store instructions
occur scattered throu~hout the program. A simple implementation of the
installer will ai~o perform a similar number of writes of patch code, with each
, atch being some small number of consecutive machine words. If there is a
high cost for each modification of the process text, but bulk modifications arc
available and comp~ratively cheaper than modifying one word at a time, it
may be desirable for the patch installer to use this method. The installer
would collect all the changes, and perform the entire installation as one bulk
modification, rewriting the entire pJocess text.

We will need space in the running process for all the patches. Again, a
simple solution probably exists on most systems, if we require the user to
declare beforu hc’starts thu proritm that data breakpoints will bu ruquired. It
may be remcmablv to simply assume that dato breakpoints will bu required,
and always ncquirl’ thu extra text space bcforl’ dubugging starts, if the’costs of
re.wwving this uxtrn space is low, ]n a virtual mt’mory unvironmc’nt, thu
m~in cost of this might only Ix’ {’xtrn swn~) SpaCLI, Aftw thu process has buvn
start~~d, it may 1x’difficult tt] obtnin th{’m’vdvd spam~. This may k’ a swilms
problurn if ttll’ t~’~tof th~’runninx pr~)grflm is rmtrict~’d to n singl(~ c(mtigll(nls
piucl’ l)f n~l’nlory, and is nbuttvd by (}tlwr ports (}f the pxcss address spmx~,
lt~aving II(J r{}(m~ ftw it tcl IN’unlargl’d,



On systems supporting mapping of files into the address space of the process,
it may be possible to map a file as text rather than data. If this is available, it
solves the problem of acquiring space in the running process, and may
eliminate the inefficiencies involved in writing the patches. (However, it can
only eliminate half of those writes, because it does not solve the problem of
patching the new code into the existing code.) To actually do the file mapping
in the monitored process, it may be convenient to require that a small
collection of routines, callable from the debugger, be already linked into the
monihxed process.

Software Requirements

Late (dynamic) linking creates a problcm for our method, because code that
must be inspected for store instructions is not necessarily present at
inspection time. To take advantage of the simple solutions above, in which
the u=r must declare beforehand that data breakpoints will be required, we
would also have to prohibit late linking. The more expensive solutions,
involving installation of patches in the midst of a debugging session, will also
require that every piece of code that needs to be watched is present, or that the
debugger be notified later, when the additional libraries are linked. There
may be no existing provision for such notification by the linker.

Ideally, we want this method to work in as many situations as possible. Our
method has no great inherent need that the code be generated by a particular
compiler, or just one compiler. However, one requirement that should be
satisfied is that the compiler leaves sufficient information to distinguish
machine code from data. This confusion between code and data commonly
occurs when the machine code written by the compiler contains various
kinds of immediate constants, such as jump tables, floating point constants,
and sometimes immediate integer values.

If the automated patcher calinot distinguish these various kinds of data from
machine instructions, it might mistake some of thcm for instructions that
can modify mumory, and instrument them. Typically, the constant would bc
overwritten, and relocated elsewher~ to the body of the code patch, This
would bc’a serious mistake, Thus, we want some way to reliably distinguish
codv from data, Note that the instructions and data need not bu separate,
merely distinguishable,

Programs that do not distinguish codr and data, and create new codu as thuy
run, ar~’ difficult to hnndl(’ using our mc’thod, As each rww piuct’ of cock k

gc’nvrat(’d by the program, it would hiwu to bv insp(wted and patched by tht’
automfit~’d }Iilt(”hitr. AIM), whun thu sttwfigc for that dynamically gwwratud
and patchl)cl ctdL’ is rucyclud for rvusl’, ttw spacu taken up by thu patch cock
wlmld nl’1’dI() Iu’ r(u.ycl~’dalso, W(I dt~ mtt vxpct thnt tmr nwth~xi t)f



implementing data breakpoints would be easy to include in such an
environment.

Results

We have implemented a simple version of the method we describe for the
SPARC architecture. We have implemented watchpoints for ranges of
addresses, rather than just for single addresses, as the test is almost as quick,
and much more powerful. We avoid the problems of acquiring patch space
by linking in an extra object module containing an arena of unused text space.
The arem is sufficiently large to hold patches for all the instructions in the
original program that may modify memory.

We currently install all of the patches before debugging begins, simply
scanning the program for stores - nd rewriting the program with the patches
installed. This act adds the capability for data breakpoints, but does not set
any. Essentially, the modified program checks store references, but since no
data breakpoints are set, none of the stores trigger any special action. Along
with the arena of patch space, routines are linked into the monitored
program, which will add or remove an address range from the list of address
ranges to be monitored. These routines can be called from within the Unix
detugger dbx [Sun Debugging] to add or remove an address range when the
program is being debugged.

Our current implementation does not address modifications to memory
caused by traps to the operating system. Because the machine code within the
operating system cannot be patched by our routines, the best we can easily do
is insert a patch after the system call, and check to see if the data at the
watched addresses has changed. This is not as good as the support that we
provide for store instructions, which detects the write to memory even if the
value written is the same as the value previously there.

This style of patch, that detects patches after system calls by comparing data,
will be far more expensive to execute than the kind we have p:oposed. Our
reported costs do not include this cost, whatever it may be. However, we do
not expect traps to be a large fraction of the instructions in a program. In
addition to this lower frequency, when calculating the effect such patches will
have on the program’s speed, the cost of the patch is balanced against the cost
of a system call, rather than the cost of executing a single store instruction.

Because we can only check aftur system calls, it may make more sww to

change the sumantics of all our patches, so that the address check always
occurs after thv memory is written, rathw than before the writu for simple
modifications, and after it for modifications by the operating system. This
would prment a moru uniform appearance of data breakpoints to thu higher
kWik of thu dc’buggw.



coats

Our method involves a drastic modification to the text of a program, and so
there are large space and time costs involved. In programs we have
examined, store instructions make up roughly 10% of the instructions, both
statically and dynamically. In the worst case, every instruction in the entire
program which might modify memory has to be patched. Unfortunately, this
worst case is likely to be a very common case. If the user knows that the store
occurs in a small subpart of the entire program, the number of patches needed
can be reduced accordingly. However, the user may not be certain that only
the stores in one subpart of the program need to be watch~d. Various kinds of
dataflow information could also prove useful in reducing the numbei of
patches, but that information may not always be available. We currently do
not perform any analysis that might reduce the number of patch points.

A static frequency of store instructions of 10°/omeans that our
implementation of data breakpoints requires space for a patch for roughly
every tenth instruction in the program, The patches we have designed vary
in size depending upon the context of the patch location, but typically need 9
machine instructions of additional space per patch. (Shorter patches than this
are possible, if sufficient registers to execute the patch are known to be
available for use by the patch.) Thus, the size of a machine program when
patched is roughly twice as large as the original. In comparison, many other
implementations of data breakpoints have neglible space costs, and those
costs do not vary with the size of the program.

When the program is ruining, the time of executing the instructions for a
patch will be incurred roughly every tenth instruction of the original
program. For our implementation, a patch takes 25 instructions to execute.
An additional 6 instructions are executed for each address range against
which the address OA’the stores is checked. Finally, an additional 15
instructions must be executed if a match occurs, to save some more registers,
and fix up the process state. We do not include this last amount in
calculating the slowdown of the instrumented program, on the assumption
that if an address matches, the debugger will soon be performing some much
more expensive action, such as interacting with the user, rather than
proceeding to the next store instruction. Thus, the dynamic costs of our
implementation 1cause the program to run 4 to 5 times slower than the
original program, whcm only several address ranges are being monitcred,

When appropriate support is provided by the hardware or operating system,
data breakpoint implerncr +ations exist that affect execution speed much less
than our lightweight instrumentation does, hardware solutions [1’appas and
Murray] can provide a Iimiled number of data breakpoints at basically no cost
in running spw’d, although thv number of address which can tw watched



simultaneously is limited by hardware. Operating system support, such as the
ability to alter page protection in virtual memory environments, can yield
fast implementations of data breakpoints also, by removing write permission
from pages containing the watched addresses, so that stores to these pages will
generate traps.

Conclusion

Although our implementation of data breakpoints is slow, programs
instrumented in this way are several orders of magnitude faster than the
obvious solutions using the ptrace system call. For debuggers that rely on this
system call for watching program variables, our method should be considered
as a replacement, if our architectural, operating system, and software
requirements can be met. On new architectures, the operating system support
for data breakpoints, (that is, the ability of the debugger to modify page
protection of the monitored process) may be planned but not yet
implemented. In this case, our method may serve well in the interim.
Finally, on hardware that provides support for data breakpoints, our method
might be used as a backstop, if the hardware resources are exhausted.
However, a steep degradation of speed, objectionable to the user, will occur
when our method is used to relieve an overburdened hardware solution.

References

[Kessler] P. B. Kessler, “Fast Breakpoints: Design and Implementation”, in
Proceedings of the SIGPLAN’90 Conference on Programming
Language Design and Implementation, SIGPLAN Notices Vol. 25,
No. 6, June 1990.

[Pappas and Murray] C. H. Pappas and W. H. Murray III, “80386
Microprocessor Handbook”, Osborne McGraw-Hill, Berkeley, CA,
1988.

[SPARC] Sun Microsystems, Inct, “The SPARC Architecture Manual, Version
8“, Part No. 800-1399-12, January 1991

[Sun Debugging] Sun Microsystems, Inc., “Debugging Tools”, Part No, 80()-
1775-10, May 1988.



Integration of Performance Analysis and Debugging

Marty Itzbwitz

Krishna Kohti

Madhavan Thimmtzla”
Alan Foster

Paul Sanville

November 15,1991

SilictwI Gmphics Computer Systems
2011 N. ShorcliJK Blvd.

MountaAn View, CA 94039

ABSTRM7

Rrforma.nm measurcmentand debugging arc complcmentnry techniquesused ro produce a
con eflicicm pmgmm, In W pqxr wc will discus h inqnuion of W Iwo in SGI”S
Co& Vtinm product. We first discuss W notion of dau sampling (snapshots), and sam-
ple uaps. Then we will lalk abotu k kinds of cumulative @onnarKc dau chat is rml-
lectcd, and ck insuurnemation used to collect iL We will al= dmcuss tracing data. used
for M @onnance measurementand debugging, and Ihc.nwe will talk aboul extensions
m our K& to suppcmmultiprocessorapplications. Finally, we prcsemour conclusions.

1. Introduction

pcfiom~ me~~~[ and debugging are complement techniques whose objecrive is LO

pmducz an efficient program thaf gives W right anwcr. If a program fails, hen it certainly takes 03
long to run, and hcncz has a pfcmname probkm. On k ohr hand, even if a programgives the
right answer, if its algorithms or Lheir implememation cause it to take longer than tic end-user will

wail, it clcariy has a bug, In Ws paper, we will discusstk overlap of performance meivsurcmen!and
debugging. alxl descrk k impltmenuuion of SG1’SCodeVisionm Pcrfon?.!mcc Am(vsis tools r.h
exploit this cxnmonality.

To LIK dcvelo~r, @omnm measurementand debugging arc quhc clowly rclaw!:tiy borh

involvestudyingI.IKbehavior of a pro~ram, and i[ seemsquite nacuml LhaIsimilar Icchniqucs would
be used, and, more impnantly, W UK user model pmsemed 10 do debugging tasks and tim

presented m do pcrfonna.ru measurement be similar, FUIIiKmIO~, IJK developer may sIan to do a
“~r,omn~” cx@ment, buI dcm some problcm tit redly is a bg, In our system, even while
pcrfonnancz W cdkction is !Aing @xc, UK usermay exercise the full power of a debugger: slop-
ping dK PKWXS.setting brcakpoirm.examiningrncmory.and m forth These debugging features am
svai.lablc even ifLtu prwxss has &en instnuncntcd,

Another rcmon m imcgmtc lxrfomnancc analysis and debugging is th the cmmction of ~rfor-
mancc data from a p~. Involves precisely W same son of control o~ralions as hose nccdcd for J

dehug,gcn w and stop LIK process; read dar,a from iu ddrm-spau; dclcirnine tic proms’ call
stack: nou wtm it makes a system call, erc AU of these fumims are provided by a process.comrol
saver that is common 10the debugger and pcrfonnancc analysis umls, ad is dcscrikcd clsewhcm 1

~ cdt’u~m u auuJanwk of S1l.lamC@AKl, Ilw-lqmrm!d

1 P. Smvil.e, Chmg. A.M. d FOOW. A “Mmqmg kbqgcr Recess k.~ecu(l(m A FU-IIIr SUt,r
klachm &qxrxh”, MXI ~ m th MUM



Novcrnbcr 15,1991

The next ac.cdonof this paper dcsaibea lhe sampling pamdigm chat allows for pe)fonnance
mca.surcmentsover various phasesof execution of the program; tk third section describesthe perfor-
mance daLa that can tK cmllcctcd, and the instmrncntation to collect it. The fourlh section discuses
vtious kinds of tmc.c information, which am used for both debugging and performance analysis, A
!lfth sedon discusses extctions to support multiprocessing, and finally we pm.ent our Umclusions.

% The Sampling PamlIgm and Sample ‘l%apa

Many ~rfOIWllCC WldySiS L ive mcasumtnems thatarcglobalover the entirenm of a pro-
gram:implicitly, Wy aasumctllm ~mgmm’s pcrfommmc chamctcrist.icsdo not change over the
course of a m However, many ma.1programssimply do not behave ~t way. 7Tey execute in
phases,and each @it has dlffmcntprformancc characuristics. One objective of LIWCodeVision
project was to& able to extract @ormance chamctcristicsfor each independent phase of execution
of a program. To meet this objective, wc defineda SampfcTrap,which is analogousto a Stop Trap

(progmm brcakpint). Data is recordedatevery sampletrap,andthe visualization uIols allow exarni-
nadon of IIW cwrnuladvedata betww - ‘ny two uh Pints.

To the user, the samples W were Wcn aPCindicated by tick marks along a timeline spanning
fhc expcnmcnL A pair of calipers -e provided that can bc used to mark of W region of imcmst, and
all of Lhctools can* syrdwmbd 1- any paficu.lar Mipcr settings.

In a debu~r, when you wmcs to ace how a program is progressing, you can set (stop) traps hat
will stop the program at vafious imeresting places in the CQC!C,and examine iLsstate when it reaches
Umscplaces. Such t.mpsmay bc defined to fire when fhc program counter (PC) reaches a panicular
addressor source line when tJMprogram enters or exifs a pmlimdar function. or when il sm.rtsor com-
pletes t systan all. Chhc.rtmps can bc set as watchpoints, which will trigger whenever a watched
mcmo~ rcgim & aac.ssd or changed. We also provide a @lpoint trap which is fired a; quktr
timed intemls. And, ofcoursc, there is a manual Lrap,namely the “stop” button.

In our system, tmps arc delbcd as having flavom, ti a stop mapis LIWflavor commonly used in
dcbuggin&. For @orrnancc measummen~ we also defimd a sample trap, which can be planted in
exactly the same way as a stop trap. The difference between the IWO is the Ixhavior of tic systcm
when W trap fires. A stop uap stop k proms, whereas a sample uap causes the performance me~s-

twcmcnt mols to extract all of the Prformancc data up to thaI point from fhc processand the opemiing
system,and recordh in an experiment rccotd.

Since the bulk of the Prfcmrnancedata we can provide is maintained inside the proms’ address
spare, on i~ stack, whenever wc stop W process,WCcan usc the prrxcss-controi smcr LOread ~c
data and record it in our expnmcnt record. The pcflommnce visualization tools can look at tlm daui,
and show W mt diffcm= M- any two sample points in an cxpcrimem. For example, onc couid
SC[tm.psat en~ and exit to sotnc operation Lhoughlto bc cxpcnsivc, and sec exdcLiywhat took piacc
Mwcen hose two points: which routines were called and how many Urncs,how many times each Iinc
of code was cxccutcd, where k program PC was found, ard so fonh, but only [or h imctwal
bctwcm Lhctwo ~~Ls

SuncLlm= II is diffiadt to know exactly where in the program mps should be plamcLl IO dcmar-
catc the programa @sscs. For window systcmprogtms, however, It may be sw.llghtfo~ard to dc[cc[
h changes M W progran MS. To thaI end, wc also provide a manual sarnplc trap: whcncvtr IJIC
user clicks a button on h tuwr inlcrface, a sample Is taken. When ml interactive window sys[cmpro.

gmm Is quicscc~ the ur can tic a manual sarnplc, and then request a panicular fupclirm, When
the rcsulL$of that function appear on scrc.m the user can ukc a secondmanuid siunpic, Md chwninu

thedataMween thosetwo events.



Noveznbcr 15, 1S91 3

3. Cumulative Ptrforrruance Data and Instrunmtatlon

ITc Co&Vision pcrfonnancc tools can rccmrda wide variety of measurementsofa ~ss. We
support number of different kinds of cumuladve data: mawumrne.msof resourceusage by a process,
as maintahd by W kemd; sutistical PC protll.ing; function execution counting, and/or basic-block
cmn.thg. Each of b rneasurcmentsarc zclcctablc, in any mmbirtation, from a performance panel,
integnued with the debugger. The pmformanccpanel sJso provides for the cnuy of a directory name
used for recoding all data in an expctient record. It may lx Invoked any time during a debugging
acssbn, although any dam spcificalions must be set Ixforc stan.ingthe execution.

The CodcVislon pflormamx tools do not mqulm that the Wr know about rclink.ing with spe-
cial libmdcs or progmm insuumerx.mien(excqrt for rrdlodfiee tiing). When perfonnarm data is
selected, and a run auutecl,the systcm will automatically instrument the program according to tit data
rqwstcd by k user.

PC profiling la instakd by intcrcep.ing the stamp code of the PIKWSSmoving tie stack down to
providea IndYcrfor ~ulasing the courus, md invoking the kcmel sewiu before branching to tic
nrnnal user mamrp code. It introduces a small amount of ovcrk-ad at swtup, and will use a fairly
large region of h stack (one M.fwod for each instruction in the pmgmm). Dwing normal running,
however, shereis no diston.ionof the behavior of IJK program,

Count@, either of basic-blocks or of function calls (a subsetof basicblocks)inuoduces sub
stantially more overhead: It mandatestie program into a substantially larger program that maintains a
set of counters, also on the stack. While the actual bhavior of a prognun hwtnmnentcdfor basic-block
cmtnts is sigrdficantly dffercnt tlom an u.ninstmmentedprogram, the mums accumulatedallow for
exact compmbn of instmction counts as if fhc program wcrt uninstrumented. Unlike PC sampling,
these numbers mc exact, not stallstlcal. If troth?C sampling and counting arc requested, Ltreywill
Mh ix pformcd, ml both kinds of data wUI Ix extracted. The program tia[ does the insLru.mcnta-
tion is based on the system program,ptie.

4. Tradng Dgta and Tram Traps

For some klnda of problems, either pcrformamx or debugging, It Is useful to see tie paucm of
khavlor of the program. To thafend we defined another flavor of [reps, a uacc trap, When a ttacc
tmp fires, mther than either stopping the proms, or sampling lhe bulk of iL\ pcrformarm data, wc
record informadon abut the s~lflc event LriggcM8 the trap.

We supprt three kinds of traces: ndfoc~ree tracing, systcm call tracing, and page fault ttacing,

Ttwy may tx scleacd Individually or In combination from h perfonnarrccpanel, jus[ as fur cumula.
thC d-

The tracing of wulfoc and~ree events cm be u.scdto deal with both prformancc anomalies
and bugs. 7Rc most obvious Prfonnancc problcm in the U.SCof dynamlcedlyallocated stomgc is
s leak: a region of memory Is allocated, brx never freed. If the user aclcctcdmdloc/@ tracil~g,
each call to eh.lwr of ttmc mIIdIWS (or to sbr& or reuhc) wdl record a rcco:d of where the
region was allocs!cd or frocd, and its s17c; Mt also record the callstack of the program at the tlmc
of the call.

TIE tmx can be AwIIIA m a map of tJMheap, showing tlmsc areasallocated and freed,
and those -~ that have Mm allocatd, but not freed. To fbrthcr a.ldIs figuring out t.hccause01
h pmblcm, the tmce also Includes indications of where samph!traps fired, so tha[, for cxarnplr,
one can M exactly which mglorusof mcmo~ were dlocaIcd red/or frccclduring a paniculur
phmc 01cxmttkn of the program. The user Inlcrfacc [o this dam also pmvidcs a search ctipubil -

Ity to look for WIILS assoclalal wll.h a panlcular heap addrcm, and a fwillly fur Ilslirlg all



Novcmb 15, 1991 4

urunakhod~ree’s, including duplicatefice’s.

The use of ndloclfiee tracingrequlrcslinking with a speeial library, -bnulloc_cv and pro-
vides a very fast mating mechanism, buffered within the targe[ process.2The callstack traceback
for the event is done by tiM process itself, mther than through the process conud semen the
trace LMpllrcs u’dy when the buffer within the process is full. The buffer is empied at hose
times, d alw wkncver a sample trap llrcs, so that ti sample evcnu can be correlated with
wudloclfiee events.

42 System Call Tmdng

Both bugs ard prfonname problems ean be manifested in a program’s sequeneeof system
calls, sometimes, for example, an lsee&() on a file can b made h one place of a program,
confusing a subsequent red) in another, sometimes, the program makes a large numb of
uselesssystem calls: it may repmtexlly ask the system for M PID, when h could cache II, We
have actually found programsthat size a file by reading it, instead of calling sruro.

To auppfi investigation of these problems, wc suppxt tracing of system calls, Whenever
a call is made, h arguments to the call, md he call s!ack of the program at the time of the call
is reuwded.

43. Page Fault ‘Tracing

AnoLhersource of prfonnanw problems in a program Is attribumble LOexcessive paging.
To suppml investigation of M problem, we also defined a page fault trap. Wherwver the pro-
=ss takes a page fault, we record the faulting address,md the cal! stack of the program at the
time of k faulL By looking at lhcsc events, the user can scz what ponions of the code arc
qxmmlblc forpaging evems, and, Iqxfully, recodetic algorithms to reducetheir working set.

S. Multlprocesslng Extenalons

The most imptant extension to support muh.iprocesslngis Ihc extension of tic nolion of sam-
pling to mvcr all h.mads of a process, Sample tntps can be independently specified LO:riggcr In onc
or mom ih.mds, bw, whenever they lriggcr, all threadswe stopped, and the indcpendcru data for each
thread is rcmde.d, The data for each dwcadmay b separatelyvl.suallzxdand compared,

Imp,cmenlalion o~”multiprocess supprt required the detection of those events which cause a
proms 10 lx cmatcd or to exit, Code was added to nurse caeh proass through IL* gcstat.ion,md lhcn
res~chronhc all the processesIn the MP application for future sampling,

Trxlng 1salso be dme indcpcndcnt.lyon all threadsin an MP application, and tic trace dmu can
lx indeprbdcntly viewed,

6. Conclualom
Debugghtg and pcrformamx anQlyslsshare many mmmon fcalures, and many of t.hcproccss-

annl options ndcd for one arc nccdd for the olhcr, A eomblncd user model allows gRaI flcxi-
bi]lty In prfofmlng bah kinds of operations, VIM rclat.lvcly UUICchange in mind-set, A sampling

pandigm can W used to Mate the behavior of a prcqprn during Its various phwws of opcmtkm, and
allow I% user to undcrst&ndthe evolutl(m of a program’s behavior, Tmcing can also h usmlto under
stand petiormance anomallcs ~ bugs, and both of thew tcchnlqucs furtkr ald the undctwmding o!’
muhl-processing a~llcathm,
———

2 WeCXPIOAh posslhility of m implemenhtion theI &me nol ruquirr my kind of qmcid Iillklna, hui ii
hd feJton md wahad. M aech evenl is qmrurly eamcwl hum he ptwem,



Managing Debugger Process Execution:
A Finite State Machine Approach

. .

Paul A. Sanville

Ann Mei Chang

Alun foster

Silicon Graphics Compuur Systems

2011 N. !hrclinc Blvd,

Mountain View, CA 94039

ABSTRACf

1. lnhduction

Onc of themom complex arrw in dclwggcr implcmcmations hastmcn the corrw Iumdling of pmess CXC.

cution, Traditionally, each cxccr.nionconrsolcommuml is implcmcmcd try un indcpndcm routine or SCIof rw-

uncs rhal synchronously mtmagc Urcflow of comsol for csch phase of WCcommand’s cxwulion, Simple com-

mands like “continue”’and “stop’”arc initially wsy m implcmcru, bul tiis approxh bocomcsdiffrculi to mairuain

and cxlcnd, cs~ially when infractions trclwccn diffcrcm commands und hmdling of multipfc prmcsscs arc

considcrcd,

In tic CodeVisionm Dchuggrr,l wc spccifkd rhc processcaccutimr handling as ● finilc suItc m~hinc,

Wc found hat k formal model hnsresuld in ~i~ni(icant improvcmems in robwwness,exwnsibility, and main.

mirwbilily. Funtmrnorc, tic designproved m k cxsily cnhunccd10handle mulliproccssdchugging fccturcs,

2. lhc CodcVlslon Debugger

The (“udrl’ision Drhugxrr is u ncw source-lnn~uugcdebuggerdevelop! al Silicon Graphics as parI of an

inlcgrtucd pro~rammmg cnvirrmmcnl, llslng n dlwrihulcd clicru-scmcr model, tic fow.level PoccM conwl

funclimrs urc c(muuncd m Ihc /%wrs,\ Cmfrd .Srww,which communicates wilh clicm “views”, Muluplc

‘ views”’ Caisl as Cllcnls d Ihc Promss Con(rd,Ytrvrv, fwovldmg u user inlcrfucc for accessingunderlying dulu

and functimudily. Ilc uvuiltihlc cxcculion control opcrnmms inchrdc the ~dilionul run, slop, step, and rcmm

commundsa%WCIIa%cnharwc.dhundlin~ ol mtcrucnvc function culls, including ncwcd inlcruclivc qucnccs,

TM uup mcchunism supfmrlslrups on hrrakpnmli, Iuncmm entry or cxil, signuls,sywcm culls on cn~ or cxil,

piIIW luuhs, ml duu wuuh~mms.

As pan of tic (:odrl;~,wr inlcgrulion smmr~y, tic Prorr,u(“mtmd.Strvrralso ~widcri imc~rumf dulu

collccmm frmurcs for lhc C“odr\‘mm l’r?f(mrldn(r Arrdvzrr, 11’rus,lhr ctmxrtion model IScmnpliuucd by Ihc

hundlm~ of Imllpoints and MImplc ISUIMwhere lhc Imwcss is mmpomrily puu,scd,pcrforrmmc dma is collcmd,

and lhr prnccssIS tiulmru.mwlly resumed



July 30, lSEI1 2

model kgan to tmak down. Some intcrwtions, such as incoming pollpims for cha coll~tion during single

stepping, wcm exucmcly difficult 10handle reliably.

A finiu suucm~hine was designed 10fo%ally specify all of lhc possible slalcs and mnsil.icms for ham

dling the existing exmrlion I’MIUCSLSand rraps. The initial spocificadcminvolvd multiple dcrcnninisti finite

mate rnachinc with nin- distincl SUUCS.Through progressivercfincmmu, h original design was cmk.scd

into a singk nondccrrninisric finilc sw machine wi~ Ihrcc SUCS, wilh a fourlh king added Ialcr fm handling

muhiprcccss synchmnizstion.

RN handling transitions for a single prcccss,lhrcc distinct stalesexist: Running, Sfoppcd, and Terminaed.

TIIC ●llowable act of evcms inclurks bolh pracessconlrol rcqucsIsand rlw uiggenng of various ~s, In each

mmc, uansirkms arc dcfind for -h of tic possible cvcnls, some of which arc ilkgal. A @k ckfinca -h of

tic kgal evenls, lhc rcsull.ingSUUC,along wilh the set of actions 10lx pcrfonncd, Additimsl swc inforrnadm is

smrcd in tic debugger’s inwmal prrxcss objc-ct and otmirwd dmxrgh h /pot kernel inmfwe.

As an example. cmsidcr Me case whcm a sq@ pmess isgiven k “mum from curmu frame” rcqucsl

and cncaurws a bmskpin[ bcfmc lIw rquesl is completed, The pruess would initially b in he Sfoppcd slam

The event, RelwnRequesl wcdd cousca transition inm the Running SIWCaha ex=ruing IIW acticms m WI tic

frarnc cxtt uap, resume execution, and notify the chcm views, Upm cnrxrum.ringIJWbreakpoint trap, lhc pro-

cess moves imo hc Sioppcd SLWC,and tic actions arc pcrfmmd m ckar rhc frame exil map, notify h clicru

views, ex~wr any at~chcd ~tions (or rhc lnggcrcd r.mps,and rcplam any lcn~ious haps mcssary (if rcmovwl

previously 10bc slcp~d over},

4. Multlprmss ~bugghtg Iixlcnstons , .

The finilc SUIC nurchincwas c.asily cxkndcd m hundlc mulriprrrccss&bugging, As tic Process Conmd

Smw mainlains control over wh of lhc prm’csscs.II is able w hsndk synchrmisaion acrossrhe cmirc group,

In t,hcmultipmccss caw, lhc CodrVi.rion f)rhuggrr providesarrcxlcnsion to the rmp mdmism 10 s~ify tit

uII prmcsw in a pruwss grnup should bc smppcd when u prows smps M tic uap, A ncw stmc, SA~pendrd

was intruduccd 10cnsurr thw such l.mpsarc cormx’lly hnndlcdwhen multiple traps miggcr simulrurwcmly in dif.

Icrcnl pruccwcs.

A uiggcrcd wup may or mtiy not uuully smp ihr processduc 10wrditioruds, courm, and dwu collccli[rn

wmplc mips. Furlhcrrnnrc. Mnumtwr of dill’crcm proccsscsin Ihc pmccss group might cncrmmrx uups simul-

tunrously. llrus, when a prrkx’sscncounlcrs n lrrrp Uuu would not nomudly cuusc a slop (due 10 a ftilsc condi.

LIOIUd or ohcrwisc ), il is movml irrm the .Susprmkd wwc, Then, the remaining pruccw cvcnut fof WC pnxmw

:uoup mrctumrllcd m dctcmninc II Mll k Imrncsscsslmuld hr kcpi sh)ppd w if tic susfrdcd I’Kwcsscsmuy hc

uonlmurd,



A Visual Debuggar Constructed by Program Generating Tochniquo

Ming Zhao

CS Division, Asian Institute of Technology
G.P.O. Box 2754, Bangkok 10501, Thailand

A.bntrmct

This p&per pre6ents the construction of a visual debugger in
which the debugged user program is used as the carrier of visual

functions. The realization is conducted by program generating
technique. The existing tools are exploited without investigating
into their interior structures.

Rquords: Visual debugger, Program generation
Tool integration, User interface

1. Introduction

Visual help has been used in program development long before the
term “visualization” was introduced. We use flowchart to demon-
strate program ~tructure and use djagram to show data structure.
With these visual help, the de~ign i6 coded to program text much
easier. Psbugger is inevitably the next step to achieve satisfac-
tory executable code. Yet at this etage, no longer i~ the visual
help available. In recent year~, with rapid progres6 in visuali-
zation, there have been work~ on vieuelizing the debugging prnce-
dure . The two aspects to be Visualized are ciata structure and
program execution sequence.

Thi6 paper proposes a new strategy to realize debugger visualiza
Lion. The aim to be achieved ie a conci~e, flexible, yet power!ul
debugger vi~ual supporting package. It doe~ not intend to become
an independent c!ebugqer, but to attach v!r+ual diagnosing ability
LO en existing debugger. Program qenerat.inq technique i~ adopted
to achieve the goal without investigation of th~ underline drbug
qero Section 2 of this paper reviewG R(me of the exi~tinq work~.
Section 3 presentB the implementation Iltrat.eyy (Ii tI vinual deb~lq

qel by proyram yeneratinq techniqlle, Se(’tion 4 dnu(-ril)e~ tl]u
vi~ual pteheut.at.i or] iHUUC?H 0! det)uq(]inqd!fl(;rlor;i!iillfo]md!ion,
Scctiofl t concludn!; Lhe pmIrI al)dmakct; n(]nlo IIU(IIIUI;I i (~ril; .



II. Ralatod Work~

There
Years(~,S~4c~~siderable

works on visual programming in recent
!. The majority of the works are on language design,

compilation, and various applications such as database query.
Less efforts are spent on debugging procedure. This is a situa-
tion similar to that the powerful source level debuggers were
developed many years later than the textual programming languages
were designed. One of the reasons is that the debugger is not
easy to construct. A debugger is a highly dynamic interactive
procedure. To visualize a debugger, data structures and program
execution sequences are to be shown visually. Yet not like data
structure or program visualization, here no visual relationship
is available, the debugger can only obtain indirect information
from declarations of data types and variables, and function call
eequences. In addition, to generate correct visual effect, the
spatial relationship of data items and historical sequence of
dynamic execution have to be considered. It is more difficult to
organize visual presentation.

An earlier work on program visualization is the PV system(5). It
intends to provide lifetime support for software development. The
aim is to support maintainers of large (106 lines of code) corrl-
plex software system. The users of PV system are permitted to
look inside and watch their programs run or “open the side of the
machine”, as the authors described. The PV system is designed far
programs written in Ada. The system provides the individuals a
variety of graphical representations for static program struc-
tures and dynamic procedure execution. The system allows simulta-
neously display of several different representations for the same
portion of a system or the same representation for 6everal dif-
ferent portions through the use of multiple screens or multiple
view ports.

Animate
!

algorithms and data structures are described in
Barnett( ). The book is written for novices in programming. It
provides simple explanations and practical information for tho~e
who need to use data ~tructures and algorithms, A number of
programe written in BASIC illustrate program execution and die-
play the data structures while execution. Although ti~ta struc-
tures are represented visually, few is written dbout data visual-
ization.

A Collection of papers [elated to visual p-ogr mminq and vi6uali-
!zation are included in a book edi~-ed by Chang( ). The book cover~

theoretical presentation and practical applicatiol]ti of visual
proglamrning syf3LemH. The book focuseR mainly 011 visual program
ming but also includes some related workn on proqrnm visualiza
Lion.



Structure Iconic Language) for specifying the content and appear-
ance of icons depicting data structures. The prototype is pre-
sented in conjunction with the data structure editor in the
integrated progranuming environment being developed at the Univer-
sity of New Burnswick. The design of the DSIL is based on the
features of data structures in Moaula-2 and is developed in X-
window environment.

The VIPS (Visual and .. teractive Programming Support) system is
presented by Sadahiro( i ). VIPS is a visual debugger working on
Ada intermediate languages Diana and quadruple, the eyntax tree
of the Ada program and the sequences of tuple of an operator and
its operands, respectively. VIPS preprocessor analyzes the Diana
file for information about blocks and variables. This information
and the quadruple are downloaded to the workstation. When a test
is executed, VIPS interprets the quadruple to depict program
execution behavior. VIPS graphically presents several views of
Ada program execution in eight windows: data, program code, block
structure, acceleration, figure definition, interaction and
editor. Since it works on the intermediate level, the data struc-
ture6 to be processed are simpler ones.

The integrated progr
T

development environment FIELD is developed
at Brown University ). FIELD offers a variety of facilitie6 to
the programmer to build his/her own system. It is implemented on
UNIX environment and makes u6e of several UNIX tool~: editors,
compilers, debugger6, profilers, and make facility. To integrate
these tools, a central message server is used to coordinate
communication among the tools, a concept called selective broad-
cflsting. FIELD support6 visualiza~ion of user data structures,
including dynamic updating of these structures while the program
executes. Program execution can be viewed through the eource code
or through the visualized source code as call graphs. The intent
of FIELD is to become an integrated en~ironment. Visual debugger
is only a component of the system. The weakness of FIELD is it6
performance. 12 megabytes of memory is needed to ensure the
minimum environment. Any extension requires consistency with its
message broadcasting system. FIELD offers various visual debug-
ging facilities, but large portion of the iunct.ion~duplicate the
existing ones real!zed in other tools.

III. Vi-ual D.bugg.r Oon.rating



repetitive works. The difficulty ie that it is not always eagy to
incorporate new functions into the old system.

In a modern proqranu ing environment, various powerful facilitie6
are already provided to the user6. To build new functions, it i6
not nece6sary to start from very beginning. Yet incon6i6tency
alway6 exists. The rZELD system u6e6 a central me6sage server to
cover the differences. But for a limited application involving a
small number of tools, this general form of central server i6 not
very efficient. In this cage, the program generating technique
can achieve more efficient result. In this work, the functions of
an existing textual debugger are exploited directly, the visual
portion ia develcged somewhere else. The program generating
technique by LEX/YACC ia used to combine them together and to
make up the inconsistency between them. The following can be
described as Lhe characteristics of this system:

implementing a tool without much effort and little time
and space consumption,
exploiting existing tools a6 much a6 possible,
covering several tools without knowing their interior
structure,
offering user accegg of vi6ual data 6tructures.

The programming language C is selected a~ the language for it a
visual debugger is implemented, C is one of the most popularly
ueed language. With its spe?:ific language 6tructure6, it is more
flexible than other high level languages, and thus i6 more diffi-
cult to debug.

Dbx is a powerfu
d

debugging tool implemented on UNIX system V.
With dbxtool ’g(l ) enhanced multiple window interface, it 6eem6
there i6 no need to add any new function. The only thing which
dbxtool lacks, an~ which might be badly needed, especially for
novice u~ers, i6 t-he visualization of the debugging diagnosis
information. To realize visual debugging ability for dbxtool but
without inveatighting into dbxtool code and without understanding
the interior data organization of dbxtool, one p(’166ibleway is to
let the debugged program itself do the job. If a piece of code
visually showing the data object i6 attacheci to the original
program, when the program is exec~lted under debugging, the at-
tached code will be activated to produce V1OUB1 representation.
Thi~ piece of code iH called a vleual decorator.

Undoubtedly, if a visual decorator ha~ to be manually inserted
into the oriqinal program, no one will use it. Fortul;ltely, there
exi6t eoftware tools to automate the procedura. LEX tindYACC are
LWO well known tuol~ to generate !exical and syntactical analyz
ore end to help implement a compiler, In this work, a decorator
gsnerator i~ dr+nigned using LEX and YACC. It connir;t-s of a 1!

brary 01 viuual decuratora, and a genera!, illfj algorithm which
automatically catcht?6 a data object from oriqinal proqram and
at.tacheu t.o it u c:orre~pnndinq vi~unl dCCOIm 01 , ‘1’hn IeFIUItaIIt_

program j~ a lunqe] , funct-lunally e(]uivalei~t otlv with vi~unl
decorat.or~; ,



A visual debugger is supposed to find some dynamic,
be detected buss. There is no need for it to check

difficult to
the correct-

ne66 of the syn-tax. Decorator generator assumes the syntax of the
original program is correct already.

Figure 1 is the overall architecture of the proposed visual
debugger. It is composed of three major components. The editor
can be any one to edit user program text. The modifier is the
kernel of the visual debugger. It analyzes user edited source
program, attaches visual presentation functions to it, and sends
the augmented program for compilation. A visual library ie main-
tained by the modifier. The debugger can also be any conventional
debugger, with visual display windows created by the execution of
debugged user program. -

Source
?:ogram

Modi2ier

@EEl

[Deceracor

P24-P!3

I
I

1

Llser :ricezface

Figure 1. a model of visual debugger

IV. Vicual D.bugging Pr.-antatien

The data structures to be visually inspected are mainly dynamic
data, namely, those built up during program executior through
dynamic linkp, e.g. li~ts, trees, etc., a6 Well as dynamic call-
ing eequnnce of functions. For simpler data structures such as
basic data types, simple records, dbxtool ip powerful enough to
offer sufficient diagnoais information. Yet with flexible type
operations, no clear distinction can be made. For exan,ple, even
for a simplest integer variable, by s operation, a link pointing
to it is obtained. There could be operation between this link
and other compatible pointer variables. So tile visual debugqer
should be flexible enough to let debugger usar~ eelac~ data otl-
ject.~ to be vi~ually inspected.

Several typical data ~tructures are used in proqramminy, nuch an
utackt li~L, qraph . They will not. cnuHw much dif! icult.y Lo be
visualized illthe iorm~ fami liar to people, i! we do know Huch
data nt.ructuree whic)l are being procRFIHed, a~ illdntm ~tructure
animat.lon. For a vinual dnbuqqo!, however, it i~ very ii:cc]nvel~



ient (if not possible) to ask a user to indicate the data struc-
tures used in his/her program. A visual debugger can get data
structure information only from the type definitions and variable
declarations. Through addressing analysis, the data structures
constructed by pointer references can be represented in the con-
ventional forms. But for those constructed by index reference,
for example, a stack composed of an array, as the storage, and an
integer, as top element indicator, there is not a reasonable way
to detect the stack structure. Therefore, this kind of data
structures are not subjected to be suitably visualized.

In decorator generator, a variable with data type to be visaally
presented is cz.ptured, and a corresponding visual template is as-
signed to it. A visual decorator is attached to the variable each
time its left value is changed. For variable i, the attached
decorator will look like

if(i_vf) v show(i_template);
here i_vf is a flag contro~iing activation of v_showo, and
v show( ) i6 the function which manages generation of visual
o~jects to be shown in visual area. It finds the visual template
for variable i, fills in present value of i, checks links from
and to i for dynamically linked data objects, and providee the
result to the layout procedure.

Decorator generator maintains a visual library which records the
templates for variables caught from the original program, as well
as the operations needed to manipulate the templates. The library
is used by visual decorators. It is also needed for dynamical
visual inspec~ion during debugging through dbxtool ’s display and
call commands.

The visual objects created by v_showo are floating ones. How to
really arrange them in the visual area depends on the layout
procedure. This procedure maintains a coordinate system for
vi8’~alarea, and arranges in it the data objects and links. There
are conventional visual representation for some commonly used
data structures, such as list, tree, as we see in a textbook. But
in decorator generating, there can be no distinct indication of
data structures, only types of variables are available. To keep
vigual representation of data structures the same as the conven-
tional representations is not always easy. The visual effect
depends on dynamic creating procedure of the data structure~.

The typical program development procedure is that first the
program is edited, then it is compiled and debugged. If any error
is reported during compiling or debugging, the user will come
back to his/l~er source program and modify it correspondingly.
Dbxt~ol has incorporated in it the make facility to compile pro-
gram within dbxtool environment, 80 only two stages are involved
from a user’s viewpoint. To attach visual decorators, however, an
additional stage of decorator generator ig needed, cuuoing a
little inconvenienc~. Thi6 problem is easily bypaas~d by batch
processing. A bntch fila, ~till namad make, i~ created, putting
together dacorator generator and make command~, so that the ueer~
can still work in the same manner. Moreover, using dbxt.ool’~ file



facility, the program appeared in the source window can still be
the user edited program with correct line indices. So the deco-
rated program can be regarded as been hidden from the users.

Dynamic behavior is very important to a debugger. A good debugger
offers various means of diagnoses to the users, helps them better
understand executing procedure of the program, and quickly iden-
tify and locate the bugs. A debugger should offer the users
certain kinds of control over the debugging procedure. For a
visual debugger, the requirement is the same. To the visual part,
it is not enough only passively visualizing data structures in a
fixed manner. In this work, dynamic manipulation of visual data
corresponding to text-form deb~gging information is offered, all
the operations are fitted into the same set of dbx/dbxtool com-
mande.

A data window for visually showing data structures is created
when debugging starts. It shows only a portion of the whole
visual area. The horizontal and vertical scroll bars are offered
for the users to view other part of the area. The arrangement of
the visual objects in the data wir.Jow is decided by the layout
procedure, but users can require more detailed presentation of
some integrated data structures. For example, show the content of
an array.

Another window showing dynamic calling sequence is also created
if the users want to watch it. This window gives the hierarchy of
function calls and indicates current executing functions.

Users can not directly control the layout of the visual area, but
they have total freedom to decide what tl~be shown in this area.
When the program is executed under debugger, a decorator is
silent until a user issues a command tG activate it. The imple-
mentation is through a ccntrol flag assigned to the decorator.
The flag takes initial vdlue O. The user can set it to 1 using
dbxtool ’s eet command, and reset it to O to turn off visual
display. A user can also show visual data by using a display or
call command at any position of the ~lrogram if the data is ac-
tive. All of these are in the Eiame way as a variable ie textually
displayed in dbxtool.

The difference between textual and visual representation is that,
for textual output, no context. relationship between data and
historical sequence are concerned, the output is simply a text
stream, giving present values of the variables, But for visual
data, Bpatlal and logic relationships have to be considered, For
example, two objects can not overlup at the same location; the
following appearances of the same d~~ta object can not. create a
new visual object, but modify the vhlue of existing one, The
manacjement of visu-1 urea is getti;lg more complex when scope
rules of variableti are considered.

A limited, informal semantic checking can be uch.ieved by the
vieual debugger. The type checkinq in C i~ not. complete. For
example, C does not apply range checking for array il:dex, though



the bugs related to range checking are often difficult to detect,
especially when pointer indexing is used. With dbxtool, only the
content of indexing variables can be in6pected, not. vifiually
expressive. With data window, since data structure6 are integra-
tively represented according to the logical structures, it will
be easier to visually find out of range errors of the array
indexing.

A prototype is implemented on SUN3/60 workstation. In the present
implemeiltation, UNIX system functions vi, cc and dbxtool are used
as editor, compiler and debugger, respectively. Separated compi-
lation is not offered, only a single C file can be processed.

V. Conclusion and Discussions

This paper presents a new 6trategy to visualize a debugger tool.
The existing tools are fully exploited to realize visual func-
tioning. One interesting a6pect is that by using program genera-
tion technique, the debugger visualization can be easily imple-
mented without understanding of interior structure of original
debugger. This provides an effective and efficient way to attach
new characteristics to an existing software package. It is possi-
ble chat the same technique be used to Othei application of
visualization.

The visual debugger is obtained by program generating technique,
where only the generation of decorated program is language de-
pendent. Not much effort is needed to extend it to a multi-
language visual debugger. For example, to impl~ment a Pascal
visual debugger, we need only to rewrite lexical rules for LEX
and grammar rules for YACC, and use compiler pc instead of cc.

A 6ymbol table i6 required to record data types used in the
program. ‘rhisduplicates the symbol table created by the compiler
with -g option. Since the symbol table iIl internal data 8truc-
ture, without inquiring into the compiler, the duplication can
not be avoided. Yet with current trend in offering a standard
compiler symboi table to the out6ide usersl the decorator genera-
tor can expect to use this table when a new compiler offerrj it.

To be a fully functioned vieual debugger, there are mor’~ thing6
to be considered. Ficot ie to incorporate separated compilation,
which is necessary to develop large application program. Another
is to mllow incomplete visual information. In visual presenta-
tion, spatial and historical relatioA~ship are important. Yet the
users may randomly require vi~ual display without concern of Buch
relationships. The debugger nhould accept these incomplete re-
quirements and give indication wnere the vi~ual information iu
missing. Still another concern is the layout, To be vi~ualiy
attractive, a powerful layout procedure is needed. It ~hould be
able to arrange v~eual objects in ~way familiar to the ~lgers. It.
will be better if the users can have certain control clf t+e
display objects and select their preferred way of prebentati~)n.



Acknoulodgomeat

Thanks are dve to ?4anzur Alam Shaheed for his work in designing
and implementing the prototype system.

Roforancos

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Barnett M. J., Barnett S. J., Animated Algorithms, McGraw
Hill Inc., Singapore, 1988.
Chang S. K., et. al. (eds.), Visual languages, Plenum Press,
1986.
Chang S. K., Visual languages: A Tutorial and Survey, IEEE
Software, pp.29-39, January 1987.
Chang S. K.(ed. ), Principles of Visual Programming Sy6tems,
Prentice-hall International, 1990.
Herot C. F., et a’., An Integrated Env.i~onment for Program
Visualization, in Schnider H. J. and ~~s~erman A. I.(eds. ),
Automated Tools for Information Systems Design, North-Holland
P~b., 1982.
Ichikawa T., Chang S. K. (eds.), Special issue on Visual
Programming, IEEE Trans. on Software Engineering, VO1. ’.6,
No.1O, pp.1105-1197, October 1990.
Reiss S. P., Interacting with the FIELD Environment, soft-
ware-Practice and Fxper~elAcc, VO1.20(SI), pp.S189-115, June
1990.
Sadahiro I., et al., VIPS: A Visual Debugger, IEEE Software,
pp.8-19, May 1987.
Seminar B. K., Robson N. R., An Iconic Descript~.on Language:
Programming Support for Data Structure Visualization, SIGCHI
Bulletin, “.01.22, No.1, July 1990,
Debuggin~ too16 for the SUN Workstation, Sun Micro Systems,
1986.

., ,



Interactive Steering Using the .Applicat.ion
Executive

Brian Bliss
Center jor Supercomputing Research ~, -1Development

L“nit’ersify OJ IIlirlois d L~rbana-Chumpaign

[Yrbana, Illinois 61801



Abdract

—- .
‘1

In this paper, we d-tribe software developed for interactively ex-
tracting and modifying typed data str’~ctureswithi~ an executing pr~
gram, a package dubbed the apphcafiorr ezecutitv, or at for short.

The application executive incorporate much of the functionality of

the Unix breakpoint debugger dbz [Uni137b, Lin90] or gdb [Sta89a], the
breakpoint debugger distributed by Free Software Foundation, namely
the ability to interpret arbitrary expressions and acceas to data objects
in diflerent stack fram-, It further supports run-time dcfini[ion of new

data typ- and data objects, and extended tlow-of.control constructs 1
There is a major difference between ae and conventional brcakpoiut
debuggers: conventional debuggersexist aa a separate process,with a
different addresa -pace, where= ae is simply a library compiled with
the user’s code. This allows th~ user the freedom to nlodify se’s internal
data otructuru at will, for compi]eclcode to call Lhcae interpreter and
for the interpreter to return values to the compiled code, and for tlw

user to arrange for the input text stream to come from an nrl)itrary
source, It allows the uam to createcomplex dntn structures (pcmsibly
containing pointers) in a program’s addrms sptit, O.Lrun-time and to
pass them u arguments to compiled routinm It doea not interfrre
with processesthat communicate using signnls, nor does it rely on
the operating system to context switch hnck and forth kwtwrru [hr
debuggm ●nd the application, providing for moro c4Ticientdatn accetib.
Orw disadvantage is [hat [he uwr”s program cnn poasihly corrupt rw”s
internal data structures, although this rar~ly happens whcII it i~ uacd
in a manner similar to conventional breakpoint debuggers.

Th~ application •x~cut: .I= unm C’ as the Rourrc for Itn in[crprrtrr:
three Ih no n-d for th? user to irarn a new prc~grnmmingInnguag? in
order to use it, Very fm nom!latldnrd conntrurtn were addrd to the (‘
intmpr~ter, lnntrad, the umr cane functionn ill thr ac Iil)rnry (hbat, a)
. mrg the hat i,;.bd~ill~’~nativ~ calling convention for 1/(), control of
mcopingletc. II r?tri~vrn BymbolIc informal iml frcinl n IlrlNIg syIIIld
tald~ ill Ilw ●xecutahlr junt as dbx &MW, nlthough rlhx ii)crrlll,vll;llly

rclrieves tlw rcquirwl information, rathm than relying OII R singlr I)ASS
to translalt lhc information into tlw approprintc furllm( as ar dorm
TIIIII pur[iun wf w iu trfrtrml [o M lIIT ciab nrannrr,

When callwl from n C m Fnrlrmn npplirnt irm, nr providfw nll nlmmlnl
uf iutmrwtiv? rent rol ovrr tIIF aplditnt i(m qllivnlrtlt I(I t IIF itltrrl)rr-
tiv? environnl Wn unm+ willl l,lmpnnd nlll~r nynll)(dlr Irrngungvs ‘l”lIi*
mmlrol han ita mat’ it i~ ?xprrlml t hnt thr Iuwr i- int inln!rly falllilinr
with tlw (’ Intigumgr, and if nr i~ lInml with r[mll)ilofl I{wlrnll cculr,

tile ( ‘ rqlllvnlmll of lb Frwtrnli dnln tylIIYI RI III rnlllllg r(ulvrtlliotls
. -. .-—--....-.

A)olllll~(’OnBlrUl’lBatr ll!~llll~(l[01flllur!mV@lMh)ll~



The input stream may be preprocmaed through the C preproceaaorz
cpp [Uni87a] t.o simplify the ●ntry of complex code fragments.

With the addition of ~ signal handler and various debugging rou-
tines, the application ●xecutive can form the basis %r various parnllel
and distribute,i debugger configuration. We describe severalsuch con-
figuration for diflerent computer architecture,

The software haa been ; rted to vuious machines running the

UNIXS operating ayatem or variations thereof: Sun hlicroayatems’
Sparc4 workstation, for uae with the native C compiler or the GNU
C compiler, gcc [Sta89b], the Alliant FX/Seriea~ Computers, and the
Alliant FX/2800. On parallel architectur-, aeparlte instancekof the
interpreter may be ●xecuted by simultaneously running thread~.

ii



Contents

1 Usage
l.l A Simple Example . . . . . . . . . . . . . . . . . . . . . . . .
1.2 The Stab Scanner . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Manual Insertion of Compiler Defined Objects . . . . . . . . .
1.4’1’he Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . .

1,4.11Jeclarations . . . . . ..m . . . . . . . . . . . . . . . .
1.4.2 The return Statement . . . . . . . . . . . . . . . . . .
1.4.3 Thetypeof Operator . . . . . . . . . . . . . . . . . . .
1.4.4 Thetypedec Declaratory . . . . . . . . . . . . . . . . .
1.4.5 Intrinsic Functions......,., . . . . . . . . . . .

. 1.4.6 Access to LocalCon]pilcr-I.Mncd Data Objects . . . .
1.4.7 Other Commonly Called Library Routines . , . , . , .
1.4.8 Error Recovery . . . . . . . . . . . . . . . . . . . . . .
1.4.9 Parallelism . . . . .. m.. .m . . . ..m. .m m...

1.5 Flags...........,., . . . . . . . . . . . . . . . . . .
1.6 Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Inmtallmtion

3 Debugger Configurations
3.1 SequeIl:iA Dcbll~gcrmmmm ,m. .m, m., am...,,,,,
3.2 Paralld Shared Nv!l)ory Dt’buggw . , , , , , , . , . , , , , ,
3,3 Parallel Private SIarli )Iwnory D~ljug~vr , , , , , . , , , , , ,

4 Conclusion

1
1
3
3
5
G
8
8
9

!0
11
13

15

16

17

18

20

22
22
25
25

20

,..
Ill



1 Usage

The ae interpreter i~ ummlly invoked through the routine faeo or saeo:

int fae (file, returnJoc9 routinenamej . ..)
FILE ‘file;
char ●returnloc;
char ●routinename;

,
int sae (string, returndoc, routine. name, . ..)

char ●string;

char *return _loc;

char *routinename;

\:here

91e or ●tring is the text stream from which the interpreted C code is read,

return Joc is a pointer to tlw q)ace allocated for the return value, Data
ol)jects are returned from the intmpreter using III(Ireturn titatclncnt.
a standard C construct. If no value is returned, returnloc may L)()

null. returnJoc is dcclaml as char o and not void * as tlIc latter

construct is not acccptod @ certain C compilers,

routine name is lhc name of the routine to intcrprM, If routine-name

is null, any roclc appearing in tlw input stream izi interpreted and

wr return to the caller only after a return ~tatcment iHPncountrrwlm
Olhmvitie, only the mutinc whoso namr miitchm routine-name i~

int crprctml UM1 wc rrlurn to t lw cdlw aft~r cviilufil ihg t hr lmd,v of

1Im prowl u ro, or @arlirr on a return Rtill (111)0111, Ilnnwllld rout iuvh,

i.e. block~ ofcodo Rurroundm! hy only Lrackm, arc nlwRyI intcrpro[od,
nnd wc do !mt rrturn ulmII exiting tIuch u Mock.

eKtra parameters Any nrgumrmt~ following routine .name nrc pwwd to
thr inlorprotod routinr, Tlwy uro igmwwl if routine-nsmc iHnull,

(“unr4idvr thv fldl[nving )Irogrhnl, “teat. r”:

I



#include <stdio.h>
int global = 42;
static int static-global = 6s;

main (argc, argv)
int argc;
char “argv;

{
fitatic int -tatic_local = 22;

aemtab (argv[O] );

fae (-tdin, NULL, NULL);
}

The program is compiled with -g so that debugging symbol information
is included in the executable, linked with Ii bae. a or Iibae-g, ,’~m(l run.

se-tab (argv[O] );

invokes the stab scanner, entrring the type and address of all data objrctri

and routines Ind type names into U’S internal symbol tables. Several cliag-

noritic mctwages will be printed (and pos~ik!y sonic crro: messages) during
thisprocesB:7

ncanning 436 link symbols

parsing 761 debug symbols
test .c:
ae.nt rp..ref.c:
ae~tab -ref, c:
761 debug ●ymbols parsed



Once theinterpreter isinvoked, adiagnostic message isprinted:e

entering application executive

Any text the user enters now is interpreted aa C source code:

{ .printf (m%d\n%d\nW, global ● 2, teat.e’static-global); }

84

65

The source code must be surrounded by bracket~, as it i~ considered to be
the body of an unnamed function. The function declaratory optionally may
be present; it in required if parameters are passed to the interpreted routine.
Since printq) exigts in “libc.am, w ]C1h’ 1 doeg not normally contain symbolic

debugging information. it is necewary to call printfo with the Id symbol
table entry as opp~d to the debug symbol table entry. The names of the

ld symbol table entries for C identifiers are prepended with an underscore.”
Since static-global is private to the compilation unit tent.c, and in tlw

entire program there may be many compilation units refcrrin~ to all idwl-
tifhw by that name, it is necessary to resolve th~ potential ambiguity ill a
fashion similar to dbx: the identifier is prcpcndcd with with dllename>’.

wlwrc underscores are substituted for illegal characters in <filename>, Lib-
.

Wise, mtatlc Jocal may be refcrcnwl by the name main’’static .]oca], fjWI
Sul.uwction 1,4.6 for a more complrtc description of acwss to non-global
idcntilkra.

1.2 The Stnb Scal~ner



where

filename is the name of the executable file. This is usually equivalent
to argv[O] in the formal argument list of the main program, if the
standard naming convention is followed.

return value ae.ntabo returnE the number of errors encountered while
scanning the executable’s symbol table,

Symbolic information for all routines and data objects which exist in a corm
pilation unit compiled with the -g option is entered into ae’~ internal symbol
tables where it may be accessed by the interpreter (and by the rest of the
program). Error messages, which may be indicative of a programming error,
an error in the compiler-generated symbolic debugging information, or type
information inconsistent between compilation units, may be emitted during
this process.

The stab scanner also creates entries for the linker ~!.mbols, which have
an underscore prepended to a C identifier or an underscore prc:ended and
another underscore appended to a Fortran idcnti!im. Thccw symbols are Raid
to have fmatiorl ty~. and their type is cocrccd to char * when u~ed in an
expression, A location may also be used to call a function if no value is to
br returned from the call. In thiE case, the user must insure that ~lmwdu(~
of the symbol in question is indcerl the addrcsE of ii subroutine,

Should the definition of a type name differ betwmw two or more compi.

Iation units, the former dcc]aration takes preccdenrc ancl sulmcqu~nf dcfitli-

tion~ are not entered into se’s internal Bymbcd tables, although data objrct B
declared only with a later definition of the type name rorrcctly asrium~ thr
Iattcr type. GlolJal variables who~e typex differ across compilation unitg arc

handh’d in the Banw mhnncr, regardles~ of which dcrlaration(ti) rontainm!
the ●xtern ntnrag~ clam and which dccltiration actually rwirrvml sloragr for

t IN datti objwt,

LIBually, typQ information that 1s Inconuifitwl acros~ Coll)pilhlir)n unilk

indicktvs h progranlming error, Should lIw~tahwanner rw]lvrIho m]llllict

in an umlmiralh fakhion, onc may uw cast K to whi(w tho (Iwird d;lt;l
typing, dhx avoidfi thi~ proldmn by ccm~id(’ritlg typv nWlIIIN priv;llv 10 r;Ich

ccmlpilatlwn unit, If thiN wcrv to lw tlw cakv with ar, it WC-WI(Igrwlt Iy
ccmlplicat~ lIIP usqqQ of tile inlprprolvr,

Jlrrorn wlrountwwl by IIw htah wtinnvr mhy Iw rwitdvwl in ono oft Ilrwi
Wn,vk, tor mfwt wrorrn, t II(I idrhlifiw ill (Iuwlioll iH H;:IIl)ly diwhrhl, nnd

Iho M: III ronlillmw withIlwIIOXl KI;III klrill~. I;lrfmx c(~llc~’rilitlg itllpr(q)~’rly



nested include files or blocks cause the Ecanner to terminate and return to

the caller of ●e~tabo, Finally, the stab scanner contains the same internal
error checking mechanism as de5cribed in Subsection 1.4.8 that may cause
a fatal error to terminate program execution entirely.

1.S Manual Inoertion of Compiler Defined Objects

If the user wishes to avoid the overhead of the stab scanner, he may manu-
ally enter symbols for the desired data objects and data types by using the
routines ●ae.declare( ) and fae-declareo:

.
int sac-declare (string,... )

char *string;

int tie-declare (tile,...)
FILE ‘file;

where mtring or file contains the C source code necessary to declare the
objects whose adrlrcsses follow it in the argument list, e.g.

int i, a[2];
sac-declare (“int i, a[2];W, &i, a);

creates sralic syn~lJol table entrie6 for the integer variable i and the ar-
ray a. If a data object declared in this mar.ner is dynamically allocatwl.
it is important to rcnmve tlw symhcl uhing ae-remove~ymbolo heforc
storage for it is deallocated, Sco Suhsect.ion 1,4,7,

1.4 The Interpreter



When the interpreter is invoked, a iask ncomf containing apace from

which to dynamically allocate objects, the semantic stack, and other internal

data objects needed by the interpreter ie allocated on the run-time stack,

and a pointer to this record is passed throughout the entire call sequence.
Thus, the interpreter may call itself recursively, or several threads of control
may execute the interpreter simultaneously.

1.4.1 Declarations

In addition to examining and~or modifying compiler-defined variables, the

user may create interpreter-defined variable~ interactively and modify them
in the same manner. This section describes the actions that take place when
the interpreter encounters a declaration for a data object that it cannot cur.

rently reference. In such a case, new storage is allocated and the necessary

symbolic information entered into se’s internal symbol tables,

Global Variables If the interpreter parses a declaration for a data object
not previously declared outside the scope of any block, storage for the ob-
ject and its symbolic repreaentctio;~ i~ statically allocated, and the mymbol
incertml in a static !lash tabl-, io The user may enter and exit the interpreter
and the objec~ will remain in scope, unless manually removed by the user.’1

Iffurther declarations for an object by the same name are encountered out-

side of any block. they are assumed to be redeclarations of the same object,
and the specified data types must agree.

Dynamically Allocated Local Variables If ‘tlw intcrprctcr en~ountcrs
a declaration for a data object (not declared static) inside the scope of a

block, then storage for t ho object and its Kymbolic representation ar~ dy -
nqmirally allocatml, TIN’ data objrct stays in sfopc until thv end of thr
current block. at which point tlw ~toragc i~ reclaimed (unlcsfi thr ohjert was
dcclarcd using the static ~toragc cla~s), hlultiplr declaration~ for dynaul-
ically allocated data objects are nol allower.l,ii Declarationfi inbidc a lJlork

n~d not precrdc ~x~rutabl(~ RtBtwmmts: tlwir mdcr H]AYIN’intrrmixod.



St~tic Local Variables When the keyword static is used to declare a
data object local to a block, then the semantics depend upon whether we
are int~rpreting a named routine or are within an unnamed block of code.
In either caae, given a declaration

static <type> object;

two symbols are created: one by the name object, and another by the
name <rout ine>’<block>’ob ject, where <routine> is the name of the rou-
tine being interpreted13 and <block> is the current block number. <block>
h omittd if it iE zero, i.e. if we are in the outermost block of the routine.

[f we are interpreting a named routine, storage for the object and the
~ymbol <roatine>’<block> ’object is statically allocated, and the symbol
may be referenced by that name as if it were a global variable. The object
may be referred to by the name object until the end of the current block.
If a subsequent invocation of the interpreter encounters the same routine
and block,” object will refer to the same storage location; the semantics
specified by the C standard are preserved,

If we are within an unnamed block of code, the symbol ‘<block> ’object

only remains in scope until we exit the outermost block,15 object remains

in scope until the end of the current block, This was done for the following
reason: if looping constructs are added, the interpreter may look up the
symbol ‘<block> ’object to find the appropriate storage location when an

inner block is reentered,le but Eince unnamed blocks are considered distinc!,
the object cannot be referenced from within another unnamed block.

Static Global Variables \\’hen a declaration fw a previously undeclared
data ob~ct that includes the ttatic Iieyword appcarR outside the scope of
any block, then the semantics drpeud upon whether the filename of the input
stream has been set. This may be done using the #line compiler directive
in the otandard fashion. If it has IIOt INWIIset or haa been reset to the empty
string, the dcc]tiration is considmv.1 private to the currrmt invocation of the

“ rmnains ill scope untilinterpreter. The symbol is dynamically allocatrd ~.ii..

the interpreter exits.

IJ<routllle> is the ●mpty stri~g in thr cnm of ●n unnarne~ ~lock,

‘t’l’he cod? for the routine munt br identicmt to what WM prcvioumly cIIcouIItrrrd.
“WF uc in m unnamed block, M <routine> in not ●pacified,
‘OThin iminlpmmibl~ in thr AhsenrF of looping conntructm.

7



lf the filename of the input stream has hen set to non-empty ~tring,

and a ●tatic declaration such as

static <type> object;

is encountered, then the symbol <ntrp.unit >’object is created, in addition
to object. <ntrp.unit> is identical to the filename of the input stream,
where all characters not allowed in C identifiers have been replaced by un.
derscores. An underscore is prepended to the entire string should it being
with a digit. object remains in scope for the current invocation of the inter-
preter, whereas <ntrp.unit >’object is treated aa a global variable. Should
a subsequent invocation of the interpreter have the filename set to its pre-
vious value and encounter a static global declaration for an object by the
same name, then the new declaration refermto the same object. Of course,
the specified data typea must agree.

1.4.2 The ret urn Statement

If a return statement is executed, the interpreter exits and control ruturns
to the caller. If an expression follows the return, it is wiluated the result

copied to the space pointed to by the second argument of fae( ) or nae( ). In

this case, it is an error for the second argument to be null; an error message
is displayed, and the return aborted,

Control will also return to caller when the end of a named block of code
is encountered or when the end of the input text stream is reached.

1.4.3 The typeof Operator

The typeofo operator returns a pointer to the internal type descriptor as.
sociatcd with a data object. typeof may also take a type name as an argu-
ment, and therefore cannot be implemented as an intrinbic function without
using ruacro substitution on the input stream to insert a data objwt which
iB tasted to the specified type. The [yp~ descriptors used hy ao have data
type union se-TYPE, which has tho equivalent typwlcf name se-type.
Conwqucntly, the result of a typeof expression has typ~ se-type ‘. Lilw
the sizeof operator, parent hem are only rvquirm.1 around lIw operand if it

N



is a type name:

typeof <expremion>
or

typeof (<type-name>)

<type.name> is defined in Kernighan & Ritchie [KR88]. 5ection A8.8. In
the current implementation <expression> is fully evaluated. See Sumec-
tion 1.6.

The typeof operator is commonly used in conjunction with the library
routine ae-fprintfo (described in Sub~ection 1.4.7) to examine the type of
a data object:

float t
{ ae-~rintf (&-iob[2], ‘%T”, typeof f); }
0XC21118
type: aeD-FLOAT
size: 4

stderr is usually defined as a macro for (&iob[2] ) in stdio. h. Nrr
symbolic information exists for macros, so we supply the expanded test
directly. Alternatively, the input stream may be preprocessed with the C
preprocessor, cpp. cpp buffers its input stream in large blocks; this must be
changed if expressions are to be ~valuated as they are entered.

1.4.4 The typedec Declaratory

The typedec keyword may be used in a declaration to clcfinc a new data

object using a type descriptor supplied by the rmcr:

typedec (<expression>) <decJist>:



Designing CDS :
the C NET

an On-line Debugging System for
Programming Environment.

Pierre MOUKEL1

Latmatk de I’Infamatiquedu F%ral.Misme
Eccdc Nmnak Su@rieum & Lyon

46, All& dhalie
69364 LYONc.cdex07

HWWE
e-mail:moukeli@frenst61.bi~t

moukel@lip,ens-lyon.fr

I. Introduction.

One of the most challenging problems in designing a distributed debugging system

(DDS) is the implementation of debugging functionalities in a given programming

environment.

A possible solution consists on decomposing the debugging environment into doma.his,

and analyzing the interactions between the DDS and each domain. Cheng, Plack and

Manning [CBM] suggested to decompose the debugging environment into three

domains: specification, execution, and observation. The first domain is the source code

in which the programmer specifies the expected process behaviour and data to be

collected. The second domain concerns the relations between the DDS, Ihe operating

system and the user processes under debugging. The third domain deals with the possible

interactions thatcan take place between the user and the debugger. DDS is an agent whi~h

manages the interactions among these three domains [CBM].

We have considerate an additional domain dealing with the hardware on which tt,e DIM

can be implemented. The later induces a seI of ccmsirain[s which should he me[ by the

DDS implementation. Designing a DDS consists 10 find OUIsuitable methods which

solve or minimize ~heproblems related to 13DSinternctirms with its environment, imd Ihc

hardwure constmims,

When designing [he C,. NET Debugging Syslcm (CDS) uccording to the iikvc ideti, wc

procccd in five steps descrihcd in this p:lpcr, Scctiml II prcscnls the cllvinmmcnt

according to which CDS WHSdesigned, Section III dcscritws [hc five sIcps pr~x~ccdcd It)



design CDS. Section IV is an ovcfiew of CDS; and then, we conclude by showing

problems we faced when designing CDS.

II. C-NET programming environment.

For about two years, the “ParallelLanguages and Systcms” group of the LIP laborato~

hasbeencarryingoutthedevelopmentofa highlevelprogrammingenvironmentfor

reeonfigurabletransputer-basedmulti-processors.The environmentsuggestedaimsto

virtualisetheuseof such machines. It has been developed on a SuperNode and is

composed of a set of software components presented below (fig. 1):

Monttartog
eydem CD%:
isrrerective
al-line
monhor mrd
*bugger

T4NOR++:

dynemic
mnfi~urer

process
Allocator:
dynemic
sheringOf
pomssor p]

= .Cm-’busm’n’’eVirwelisetion of mmmrsnic~[ionson he mnuol bus
VlltUd chmmls WllhOJl MSy u@lCll KWSl~

\ 1
SWRCH

[
Confmllcr.

Trmspwers: prmessors CONTROL” RUS

-Fig. 1- Organization of the C.NET programming environment

TWO transputer processor. The T800 developed by INMOS. 1~no~r’a well-known

single chip processor [J]. h has four asynchronous communication links an,+an internal

on-chip memory (4 k bytes, 50 n+]. The links are 2(’)MHz circuits, An additional

component, the M-bit floating-poin~ unit lies across the Iop of the chip. The tmnsputcr

Ins Iwo @ority levels. In patticulur, processe~ running in the high priority Ievcl cannot he

rescheduled unless ~hey reach u scheduling point (e.g. timer halt, communication point),

SuperNode. SuperNode is a trunsputer based multi-processor muchine (up to 1024

transp!~ters). It provides a cmsshur switch for dynnmic reconfiguril[ion. All t~)c

mmsputers ir, [he Su~rNodc tire cmnncctcd to II controller trimsputcr viii i~ m[lstcr-slilvc

bus (fig. 2). We usc this hus to trimspofl debugging ohscrvi~tiotls in order to tivoid

overcloudingtrunspu[er communication links,

2, Pimre MOIIKE1.1, l.lPfi\NS-liy(m, C NIH’ I’n).jcc’t,



Control-bus manager. The control-bus manager virtualises communication on the

control bus. Ii offers a high level interface that allows the processes running on the

control transputerand the worker transputersto share the control-bus. More details can

ix found in [M2]. Within the C.NET programming environment, the bus manager is

essential]y used by CDS [M1]. On-line observations camied by the bus do not intetiere

with the messages flowing across the switch in the main communication network. The

bus manager is also used by the dynamic configurcr (phase synchronisation and

communication of permanent variable values).

Dynamic configure T6NOR++. The dynamic configure T4NOR++ allows

progmns with variable topologies to be developed. T~NOR++ can be accessed ~hrough

the usc of two C extension languages. Mote details can be found in [AB].

-Figure 2- The SupzrN, de.

Debugging system CDS. This system is described in section IV. h allows process

behavior observations to be carried out in real-time when R progrtim is executed.

Observations are drawn across the control bus, They are displayed through a multi-

window interface which allows inter-active debugging to be completal,

Process allocator. The process allocator is intended to tillow [he machine to be

shared between several independent applications ( processors, switch and ccmtrol bus).

Communication manager. The C. !NET programming cnvironmcn~ Pemlits the

dcvelopmem of smticaiiy-defined phnse chnining prqrtirns. Eii~h phme is nssumcd 10 he

run on u particular topoiogy, gencridly specified hy the progri~n]mr, which is intended tt~

fit us best as possible the communication needs of the ph[isc. !)culilcd Ii}formiitiotl” (m

TdNOR++ cm bc found in ~AEI13],

.— u.,.. . . . . . . . . . .._+. — . ..- . . .~, . . . .

P’ien’cMOUKELI, Lil>/ENS-i,y(m, (’. “Nli’1’i}lOjl’t”t.



A distributed programl. iing language: C-NET. The C_NET language issued

tim our motivation to design a language supporting both object-oriented (C++) and

concurrent programming (CSP-OCCAM). C_NET rnes to solve appropria~ely the

difficult problem of interfacing class and process notions. The solution suggested in [A]

fits the data encapsulation principle and is fully compatible with the inheritance

mechanism.

111. CDS designing steps.

When designing CDS ~g to the above environment,we proceed in five steps.

Step 1. Defining the basic requirements for CDS; these requirements were defined

according to the features of the C_NET environment : process halting and interactive

context modification (process variables, channels, system variables), trace collecting and

event time-stamping with a global software clock.

Step 2. Analyzing the interactions of CDS with its environment; starting from the

rcquiremcrtts, we outlined the objects exchanged between CDS and each of the domains

above presented. Then, we defined suitable imefiaces to handle the objec~ exchunges,

This gave us an interaction graph, and then, the general structure of CDS. Figure 3

shows the issue of that step : the interaction graph, where numbers represen~ the type of

interactions for object exchange between CDS and each domain,

In short, in the specification domain (C_ NET language), interactions consist to inse~

debugging code in the source program. The suitable interface is a ;ibrwy of functions, In

the execution domain (user processes), objects are process rvents and pr~grtimmer

requests to running processes, Our interface is a se~of communicating processes and

functions. The observation domain is the programmer controlling process execution by

means of a graphical intefiace, and modifying source code according m the observed

behaviors of these processes. Finally, the hardwure (shown in grey in figure 3) is rhc

support of these interactions.

Step 3. Identifying the problems incum.d by these inlcrnclions; lhcse problems

depend on both the type of the objects cxchitnged between CDS tmd cm+ dornuin, und the

intcrfticc in which these intcrticlions t~~kcpl;Icc, S(1,wc considcrul :111the cxch:lngwl

objcms syslemwicull y.

4.”” ‘- ‘“ Pierre ‘M(N)KIil.1, l.llJ/l!NS-l.y(m, (’ Nl;’l-I)njw’l.



&

Gmphid inmke “?

-Figuc 3- Intemction graph.

For instance, in the specification domain (C-NET language, fig. 3), objects arc process

behaviors, and our interface consists of a library of functions. Examples of related

problems are readability &ndredundancy of debugging code. In the execution domain,

objects are process events; interface is a set of monitoring functions whose utilization can

incur problems such as interference with user process scheduling, and probe effect.

Finally, new problems, such as congestion, transparency, and overflow, arise. They are

related to the structure of CDS (e.g. interactive software monitor, fig. 3) and the

hamlware supporting it (e.g. SuperNode control bus which is used to convey debugging

obsetwations).

Step 4. Analyzing implementation choices. They are rela~ed to the hardware.

Therefore, we first analyzed the constraints generated by the hardware (e.g. mess’me of

bus performance as well as the access time to standard input-output and shared

resources). Then, we found means to solve or minimize the problems identified in step 3,

meeting the hardware constmints. For example, as building a transparent software

monitor is impossible, we managed to make this monitor ?iir. We also designed a control

bus manager (fig. 1) in order 10 share that bus between CDS, Tt!NOR++ and user

prcxesscs, In the same way, wc reduced the congestion incumeti by the interwive

monitor when conveying debugging observa!ionsi

Stq 5. Implementing CDS. This step is the applictuion of solmions found in ihc

fourth step, II consists in amdysing in more dctuil, the diffcrcn~ cmqmncnls of CDS imd

specifying the conpcrutitm hctwecn thcm, For cxmplct communici~lirm hctwccn the

interactive monitor and [he gruphicnl inwrf *CClukrs plucc in Unix s[~skcts, hecuusc lhcy

ntn on differenl computers. Another cxnmple is the bus shnring hctwecn tril~.ecx-mvcying

.. ..- -. . .
5

.--.-.,. . . . .
Picnc MOIIKEI.I. l.11’/lINS-l.yon, (’ Nl;l’ l%t~.jccl,. .



and clock synch.ronimtion. This step also consists in solving programming probleii~s

incurral by the implementation of choices made in the fourth step.

Figure 4 shows the currently implemermd architecture of CDS. AITOWSreprescm the

interaction between CDS prcmsscs.

-Figure 4- CDS implemented architecture.

IV. Presentation of CDS.

CDS is art on-line multi-function debugger, implemented on the SuperNode RIthe LIP

laboratory. It has been operational since March 1991. Currently, CDS consists of ~hree

components (fig. 4) :

(a). An interactive sojrware monitor to collect, convey and mtinage debugging

obsenmtions. II consists of a seI of concutmmt processes distributed on euch SupcrNodc

rransputcr, the frontal board, the SuperNode server, and the debugging work-station.

The intcr~tivc rrmnitoruses the control-bus manager to convey delm;git}g ohscrva[ions.

(b), A Xwindow based mul~i-windon’ ;:ruphicul intcrfuw to hitdlc di[ilogucs, to

display run-time events and m rc-exumine trwes, II runs on the dchugging work-stwi(m,

We currently use Sun Spark work. stutions UI~hc Lll> htborut(wy, l:ig,lrc 5 SIIUWSthe

muin window which displuys reul-time CVCIIISnnd cn;~hlcs Ihc pr(lgr:~n~mcr I() iqICII

6, ““””- Pimc MOIJKEI.l, - l.lP/ENSl.yen, {“ Nl;l’ i}rtjm.l,



dialogue windows (one for each process in breakpoint) and trace windows (one for each

Uansputcr).

(c). A library ofjin.ctions devoted tosetbreakpointsandtospecifytracecollecting

poinrsatsourcecde kvcl.

—

Ei CDS GRAPHICAL INTERFACE

CDS%EVEIWDISPtAYHALTED.PKSSSTARTMum.

m -

-Figure 5- CDS control window.

CDS currently provides:

(a). Dialogue handling between the user and processes at hrcakpoints. A dialogue is a

communication protocol which enables the programmer to observe and modify the

process context (process l~al variables, cilannels and system variables). When a prmess

reaches such a breakpoint the dialogue protocol sends a request to the programmer, and

the latercan modify the ccmtextof thatprocess by means of a dialogue window (fig. 6).

m m
CDS DIALOGUE <Transputer x- <label> my process name

bzr-~-m
thgIl UIput ~ Text mplll :

%mess varhble U- DisplayPanel
Oc uwrchwwel
1s SrlWvanatk
2B Bye immabk
3 s shortVa?lnble
4 I Infe#er Wmble
J L Limg vardk
6 D DOUWwariable

N
7, 9

-Figure 6- CDS dialogue window,

-.. —.. —-.— .. ---- -.- . ..— .. ---- .. -.-—-----
7. Pierre MOUKELI, LIP/ENS-l. y&~ C NjY~Pro~ccI.



(b). A spy process (scanner) which can collect meaningful info=nation on running

processes. There is one scanner on each transputer.The programmercan dialogue with

them at any time to collect infcmn.ationspecified for each spied process in special tables.

(c). Traces collecting. Run-time events can be observed in real time in the conuol

window (fig. 5). The programmer can also open a trace window (fig. 7) for each

uansputer. CDS also provides an event filtering mechanism, whicl, consists on the

synchronization at given dates, of event display in several ~ace windows. This

mechanism, currently simulated, is intended to be used with the global clock. Traces arc

also stewedin fles in which they could be re-examined usingtheCDS graphical interface.

•l CDS Event Display eTransputer X-

(“”3 C=) (~-) O (-) (w> time: J

-Figure 7- CDS trace display window,

other functiors are under development, among which, event time-stamping and ordering

using a global software clock, and general breakpoint setting.

v. Conclusion.

The current version of CDS enables the programmer to debug his program at a low level.

Now, we are looking for technics to specify high level process behaviors, such as

general breakpoints. The most important difficulty we encountered when designingCDS

was how to identify the problems incurred by the interactions between CDS and its

environment (step 3). We did not find an efficient smategy for that purpse. In fact, these

problems are not the same from otw progmmming environment to another. However,

there is a set of problems faced by most of debugger implementors, such as the

interference with user processes, fairness, congestion, readability , and cooperation

between the componen~s of a DDS. Ano’her non-trivial problem is how to determine the

- —. ——— .—— .-—.... .— . .. ....—.—.—.r Pierre MOUKELI, LIP/ENS-l.yen, C_ NET Project.



..

basic requirements according to *C programming environment and most of the bugs

everyone wants to finds out.

Acknowledgement. Special thanks to Nora Boukti, Luis Trejo, jean-Marc

Adamo and Ua-Flore Kanga fm theirhelp.

References.

[A] J.M. Adamo,

[AB]

Extcndmg C++ with Communicating Sequential Roccsscs,

Researeh Report LIP RR 90-25, Transmuting Conf. Santa Clara, Calif., Ap. 91.

J.M Adamo, C. Bonello

TeNOR++: A Dynamic Configumr for SuperNode Architecture,

Proc. of COMPAR’90 conf., Sept. 10-131990, Zurich, Switzerland,

Springer Verlag.

[ABE] J.M. Adarno, J. Bonneville, C. Boncllo

Virtualising Ccunmunication in the C-NET Programing Environment,

13th OUG Technical meeting, Univ. of Yoric, Sept. 18-201990.

[CBM] W.H. Cheng, P.B. Black, E. Manning

A fhmewotic for Distributed Ikbugging

IEEE Software Jan. 1990,PP. 106-115

[J] C. Jesshope

Transputer and Switchqs as Objects in OCCAM

Parallel Computing 8 North-Holland, 1988, pp 19-30

[Ml ] P. Moukeli,

Etude et Mise en CEuvrcdu Systhc de Mise au Point de Programmcs C.NET

hgages Paralleled,

Rescareh ltpOtt, LIP RR 91-22. Jul. 1991.

[M2] P. Moukeli

F%%entationd’un Moniteur de Communication sur le Bus de Contrblc du

SuperNode

La Lettrc du Transputer, Sept. 1991, PP. 33-50.

——— —-— .— .-. .—.————---- - _ —. —.._
9, pimt MOUKELI, LIP/ENS-Lyon, C..NET Pmjer[,



DBL : An Interactive Debugging System?

Muktil S. Krishnamoorthy
Anastasios D. Anastasiou

Rensselaer Polytechnic Institute
Troy, NY 12180

November 11, 1991

.,

Abstract

Theobjectiveofthispaper is to discuss the d-ign and implementation of an interactive
debugging oystem for a functional language which servesM the hat programming language
for a software packagerwitable far graph theory applications. The design and implement-
ationof the programming language is beyond the scopeof this paper[2]. But in designing and
implementing the command language for the debugger, we have tried to make ita format M
-imilar as possible to the format of the hat language while k-ping ito oyntm ckar, logical,
oimple and flexible. Additionally, a brief description of graphical interface, that is int-
duced in the system for visualization of graphs, is given. The design and implementation
of the debugging system explained in this paper could be applied in the development of a
debugging syslem for mIy langua~e.

1 Introduction

The debugging Eyst(:m implemented supports a range of commands wide enough to fulfill the
requirements of a good inu’ractive debugging system. The user may define breakpoints at
lines or function calls within the program which cause execution to be nuspended at these
points. After execution is suspended, other debugging commands can be used to analyze the
progress of the program and to diagnose errors detected. Then execution of the suspended
mogram may resume. The user can step through the program executing one line at a time or

follow the execution of the prcqyn.m even in~idc other functions called within the progrun being
debugged. The user can also trace variables so that when a variable changes its value, the new
variable value wil! be displayed. Sy6trm colnrnand6 and instructions of the source language can
be executed from within the debugger environment. It iu also possible to display the oourcc
code of the program being debugged, complctc with gt~ ment numbers, information about the

program itself (Ilanm, Eize in nu;~bcr of Iillm, currtwt line of execution), and information about

“Supporkd in parl IIY lhe NSF undc r grant (’l)A-Hlu)5!Il[I

1



the status of the debugger (breakpoints, variables traced). A function is provided for displaying
the values of variables and it can also execute function calls of the umrce language sad display
their results. Additional capabilities include removing breakpoints defined previously, removing
variables so that they will no longer be traced and setting aliases for all the debugger commands
to make the command language syntax simpler [3]. Lastly, an on-line helpfacilityisprovided
toassisttheinexperiencedor occasional user.

To improve the friendliness and power of the debugger further, graphic capabilities were
included. By introducing graphics in the debugging system, it can be transformed from a
linear, command-line debugger tc a visual debugger. Most of the data structures used in graph
theory, emecially graphs, were always best represented graphically; thus a visual debugger
helps thi :ers to visualize the rmwesentation of the data structures defined in their programs.
Additionally, they will be able to trace variables visually, and as a result they will improve their
ability to notice and understand the changes on the data structures used.

z Significance of the Problem

lt is obvious among all programmers that there is a great need for a useful interactive debugging
system when writing and executing programs. The mtin purpose of this debugger is to provide
programmers with facilities that will help them in testing and debugging their programs and,

as a result, make the process of executhg a program less painful and leas time consuming. In
this particular area of application (graph and set theory), having to deal with large graphs and
sets makes it hard to follow the execution of a program and trace those structures. In addition,
as a program grows in size and complexity, the importance of executing it in a SU-MJInumber
of instructions each time, becomes more apparent.

The debugger can also be used as a learning tool. Many times, programs provide only the
final result of the application of an algorithm to a problem, omitting important intermediate
results. A user who is not familiar with the algorithm can follow the execution of the program
step by step with the use of the debugger, discover how and why data structures change their

valu~s to produce the final result, and thus understand the logic of the algorithm much better.

3 Design Considerations

in designing and implementing the debugger, we considered the following two parameters : the
user and the source programming ianguago.

The first parameter ~uggested that tlw command language should have a clear, logical and
simple syntax and be as flexible as possil.dc. The commands were chosen to have a meaningful,
ea~y-t~mmembcr names (lIELP, LIST, Pltl NT etc) . They are simple rather than complex
with M few ~arameters as possible. Cqmmancls arr automatically checked for syntax and logical
errora and if any arc found, th~ d~djuggf’r providm a meaningful error message. IIowever, in
order to

to figure

for most

simplify the command languagr, if the error is not crucial and the debugger is able
what waA the intending r.OIIIIn JIId, it willcxwulp it, Dc[ault values are also provided
of tlw paramrtcrs. Thr flvxiljility of LIIC comIIIa IId language lies on the fact that the



use of punct nationcharacterssuch as parentheses, quotation marks, daahes and seticolonb was
minimized. Also, through the use of aliases, th~ user can abbreviate commands and make the
command langnage even simpler.

The debugger is also related to the source programming language and to the interpreter
that exeates it. The debugger command language was kept similar to the source programming
language aa long as it was not increasing the complexity of its syntax. As a result, the debug-
ging envkonment is familiar and friendly to the user. Additionally, as programs of the source
language were executed by an interpreter, the debugger itself works - an interpreter. In fact,
the program being debugged is executed by the source language interpreter and most of the
functions written for the interpreter are used by the debugger[l].

4 The Graphical Interface

The graphical interface provides the user with the. ability to display directed and undirected

graphs as well w the weights of arcs and vertices. Graphs can be displayed in different ways

such as withverticebplacedsymmetrically, horizontally, vertically and circularly. In additicm,
other special graphs such as outer planar and biparlite can be displayed in an appropriate
manner[2]. The form that the graph will be drawn is selected from a pull-down menu o: entered

s a command. The graphical interface allows thr user to move vertices and wcs and to change
\eir color and weight. It also provides the user with the ability to add ~nd delete vertices
,nd edges. All these operations to manipulate a graph can either be selected from the menu or

entered as a command.
The graphical interface is very important for the debugging facility. At any point of the

program execution, the user is able LOdisplay a graph and understand how the progrmn exe-
cution affectsa graph. The changes that occurwl in thr graph (edges and vertices deleted or
added ) become more noticeable. \Ye believe that a user ran under~tand the structure of a graph
much e=icr by visualization rather than by mxtual representation and that is why we consider

the graphical inLerface a very important featuro of tlw debugging facility. With ihe use of the

graphical interface, the usrr is aldo to draw a graph, notice the changes that occured in the
graph and understand the changm much hmtcr. In addition, it mak~~ liw whole system more
user-friendly and e~sicr to USC,

5 Interpreter Modifications

Since the debugger rxcrutcs thr langua~o commands by invoking the interpreter, the interprctcl
hzu 10 be modifmd srJ that it pcrform~ tho intcrprvtaticm and at the same time, it complies with

the debugging command~ iss’l~d, [n a way, tho intorprctation must be synchronized with the

execution of debugging commands. ThP OIIIY dl~t]uggillg commands which afTect tbc ir, tcrprcta-

tion of th~ aourcc cmlo art’ thow which suspwd imd rosumo program exwution, namely -top for
nuspcnsion of Pxcculiml an,’ next, ntep anfl continue L(.Ircsumo exrrulion. The intcrprctcr,

aftm being invokod by thf’ d{ll]uLlgl~r,inll’rl~rl’1~ I]IC %Ilurco r(J(]v until a hroakpoint rh’finrd by



a previous command suspends its execution. At this point, the user - enter any other de-
bugging command which is directly interpreted by the debugger until the interpreter iEinvoked
again by a next, step or continue command and execution is resumed.

To implement this switching of the interpreter between suspension and invocation, we used
two more flags to control the invocation: the sfep#ag is set to true if the interpreter executes
in step mode and the nezt#cg is set to true lf the interpreter executes in next mode. The
suspensioniscontrolledbytheuseofbreakpoints.The only place in the execution where the
interpreter is suspended is during the read of a new source line. At this point, if there is a
breakpoint defined at this line, execution is suspended and control passa to the debugger.
A.ISOif the debugger operatee in step or next mode, again execution i- suspended and both
flags are set to zero. If a continue command is issued from the debugger environment, the
debugger invokes the interpreter and passes control to it. This p. ocess continues until e::ecution
terminates or the user exits the debugger.

With theee features added, the interpreter has the additional capability to suspend and
resume its execution depending on the debugging commands issued by the user. In other words,
the control of execution of the program switches between the interpreter and the debugger and

the whole process is controlled by the debugger.

6 The Command Language

The current version of the debugger supports tli~ following command language:
run

starts execution of the pr(,gram to k dchuggmi, for the first time.

rerun
repeats execution of the program. All dchu=ing specifications( breakpoints, traces) used in the
previous session are saved and um! in the ncw session.

help/command/
invokes the Gn-line help facility. If a dchuggor command is specified aa a parameter, the help
filr for thih command is displaywl. It dvftilllts to a brkf list of all the debugger commands with
explanations.

list [line l,linc2j
di~plays Iinm of tho source codr of thr pro~ram tming dohugg~d. The default lists the current
execution line plus 10 more lines after: Iiotlinr / displays ttw= line sp~cified by the parameter;
list line/,linr2 dis~days the linm in tlw riiugo spvrifiwln



exit9 quit, bye
returns control to the system from where the debugger ww invoked.

system (a@ern-comrnand)
executes a system command from within the debugger environment.

next

executes the next line of the source program without entering any functions called in that line.
It suspends execution after that line i~ executed,

step
executes the next line of the source program, stepping into functions called in that line. It
suspends execution after that line.

print { uanabfc I JUnction.call}

the current value of the variaMc is displayml if the parameter specified is a variable, If the
parameter is a functionmdl, the function i~ CXOCLIted and the result is displayed.

stop {at Iinc 1 in jimction_nan~c)

stop at line defines a hrca’”?oint at the specifiml Iino; -top in funciiormame defines a break.
point at a function. ThQ cxcrution is susp[’ndml immcdiatc]y before the epecificd line or a line
containing a call to a function Epvcifiml by fr~llclif~tl-rl(ltflf.

trace varialdf
trams tlw c.hangm of ttw values of the spvcifiwl vari:ildr. Whmwvcr there is a change to the

wduc of varialdc, t lw drbuggor will display 11111vari; ~ldvqitri now valur and the lint’ numlmr at
whittl the changr had omurml,

,’1



Iila likJimctiorucall
executes a function call of the source language from within the debugger environment.

dioplay /line I file I size]
displays some information about the program being debugged. The line option clhplaye the

number and the source code for the line currently being debugged. The file option displays
the filename where the program resides and the size option displays the size of the program

in number of lines. The default displays all information above. This command can be e=ily

extended to display tiditionaf information if it is required,

7 Data Structures

This section provides an outline of the most fundamental data ~tructures used in the design
and implementation of the dchuggor.

The most important data structure used is the symbol table. The symbol table is a closed
hzuih table in whicheach huckct points to a list of taldc entries. Each entry contains a pointer
to a structure, wllirh itself contains a va.luo, and a Iisl of variable names pointing to that value.

It afso contains a pointer to the next entry ill the hash table.

An activation record strurturr is used to I1oIcIthe following information about each acti-
vation:

● a pointer to the entry 0[ lhc function within the function table

● ● pointor to the first Iinc of d~~ of tlw function

● a pointvr to a ~tructurr whirl) idollt ifim t lw d;il;l typ(’ rcturnod by ttw function



● an integer specifying the line number of the line currently debugged

● an integer taking value O or 1 to denote wl.ether there is a breakpoint

currently debugged

● a pointer to the next line to be debugged

Two hash tables were designed to implement breakpoints in function

defined at the line

calls and to trace
variables. For the function breakpoints, each bucket of the hash table holds the name of the
function, and for tracing variables each bucket of the hash table holds the name of the variable
to be traced. To avoid collisions, each bucket has a pointer to a link listof function names or

variable names which happen t~ collide in that bucket.

8 Further Extensions

The debugger at its present version has enough capabilities to aid users in testing and debugging
their programs in a very good dcgrcc. IIowcvcr, there arc more capabilities that can be included
to improve this debugging systcnl and mak~ it moro powerful, simpler and eaaicr to USC.This
section suggests some of these capabilities that ~i~lllw added.

As a first step, the debugger can be improved by including some functions which will allow
users to define conditional hroakpoint~ and Lrcakpoint.s after a fixed number of instructions
ha~ been cxccutcd, With conditimal I)rwikpoin[s, the user will dcline conditiomd expressions
that willhc continually cvalu;~twl during tlw drlmgging session. The program execution will
bc suspendml when any of thww conditions Iwrumc true. Similiu]y, the user may define a

fixed numlx’r of instruction~ to INI oxccutwl, aftvr which the program execution will halt. A
nlcnu.drivcll dchuggor will rwlucc t IN am{mnt of inforllliltim] a user has to enter and rcmcrnbcrt
Mcnufi will Imvc tithw to idrntify III(It:wks tlwy I1oIPperform and tlmy must have an cquivdont
action to thr lill~ilr dvbugging langua~f’, III ()[ Iwr word~, thcw should bc c.omplctc functional
oquivaloncr Iwtworn commands :Iud II WIII IS.

9 Algorithm

IIIthiti nrction, wo will provido a g(’wrill Idg(wil 11111uso(l to Nolvo tllc problvm. Each individuid

command of tlw intm])rolvr is oxvi’utvd I)y 1)110 tjr nl[m’ wp:watv function, 11.efcrto tlw Ap.
pvndix A fur B dwwripti(m of wwh funrl i~m,

Crfwlf f/lr If)kcll Ifll)lf

(’rralf //1(’ (’()! 11!11(111(/I(llllf

rr’tiff pftqm!lf /() hf f/f /)11(/!/( d 111111 fllfrflf)r’y

1001):

prf)ni)d //If II,W r J)f’ I’~JIIIIIIf If If/ /ilir

yfl fIfmIrmIrIf/, pIII.W il ~iInl (/It(il!i:t /fAfII

i~ III( rnftJr~/[inflIS



b~e, ezit, quil : ezit the loop and atop

atop : set the bmakpointa
nn : start inteq.wrtation

mnm : ezecute again

list : display the qwcijied lines of the #oume code
help : inwke the help jacilit~
e~stem : ezecutc the q@em command
remove : remou the apmijled breakpoint or tmms
print : display the result OJ its parorneter evaluation
nezt : czecute the nezi line. Ignorv finction da.
step : ezecutc the nezt iine. Step into finction calls.
cent : resumr czecuf~on until a breakpoint is encountered
tmce : mark the specij?ed variables jor tmcing
#how : display breakpoints and tmces

lila: ezccutc a l(imjwge command jrom within the debugger
display: displ(iy the required injomlation about the pmgmm

alias : .wt thr qM cificd alias

golo loop

10 Conclusion

ThiB paper describes the design and implcrncntation of an interactive debugging nystcm for a
programming language to manipulate graphs and dircctw.1 graphe. Wc have Bucccsslully used

thiR implcmontation in debugging the planarity algorit 11111. In addition, it provides a brief

dcecription of the graphica] inkrfilc(’ which ti]]fJws usvr~ to Visuidizc griLphN, It ah cxpldns

how the design consitlcrations of thi~ fiy~tcm ran IN ;lpp]ivcl for the design of any dcl)ugging

nyotcm.

A Appendix

This appcnrlix providwi w hrirf cxplimntitm for tlw most important functionn written for the
drbuggcr. For cuch function, wc provid~’ its ntim(’. i[s ])iiriilll~t~r~, an~i a brirf dmwription of thr
action thhl it prrformh,



table.

Name: readqrog
Perametere: program name

Purpoee: reads the program to be debugped into the memory. For each line, it stoma the
murce code, the line number -d ● breakpoint flag.

Name: c@~oken
Parameter: none
Purpoee: getn the next token from the command line and saves it in the global variable ctoken

Name: cget-char

Parameter: none

Purpose: returns the next characlor frrm llw rmnmand line,

Name: elexan
Parameters: nom
Purpme: performs Iexican aualysig of a token, The global variable ctok-typ ic an integer
constant and it can be a mnemonic constant drnoting either a string constant, ● renerved word,

●n integer constant, a constant denoting n function call or an identifier.

Name: hash
Paramnterm: name to br IIUIIW1
Purpose: applica the haah function to itHargunwnt and returns the position in the table to
bc innertcd.

Name: dbl~top
Parameter-: nunc
Purpooe: dcfinca a Immkpoini at il lino or in ii function. WIWIIthQ breakpoint iu at a line, it
findn tlic approprialv lint’ mnd H(SLHit N Imv;lkpilin[ II:IK t 01. WIICII th~ brmkpoint is in a function.

it inserts lhc function mnw inlo a hMh UIMIIwhich %lorr~d funrtlonn where hrcakpointn were
act.



Name. in=rth~uncstops

Parametam: a character ~tringrepresenting the function name where a breakpoint wande-
fimxl
Purpose: performs the insertion of the function name where the breakpoint waa set into the
jbncdopdubk

Nam- is_atop~unction

Puametern: a function name

Purp~: retuma 1 if the function name specified by its argument waa aet for ● breakpoint
and O otherwise.

Name: dbl_tracc
Parameters: none

Purpoaa: interprets the DBL command trace. It checkII the syntax of the command line and

cdla the appropriate function whicl] will inncrt the structure name npecified for trace into the

tmcc.tahk

Name: make.trnce

Parameters: the name of the variahlc to 1)0 inswlml for trace
Purpose: inserts the atructurc name spwifrwl I)y im argumcmt into the irnm.tabfe

Name: iwtraw
Parameters: name of the variahlr to chock if i~ fur tri~e

Purpose: mturnfi 1 if thr struclu m niimr qwrifiwl hy its argumcnl wu spccificcl for trace

slid O otlmwitm

Name: d Id-rcmovr

Parameters: nom
Purpose: MwIWOR hrr;lkpoinlti nnd t r;ulw, \\’lIoII a I)rwdtpoint at a line in to bc rcmovod,

itn ccmc~pondi ng brmkpoi nt II itR i~ w to wro. WIWIIa breakpoint in a function or ● trace in
to k rcmcwrd, the funrlion nnmo or viiri:kldo nanw iri dolotrd from the corrcnponding haah tahlr

1[)



Name: rmv~rom-funcstops
Pammetera: function mune to be removed from the breakpointa
Purpoee: it removes the function name opecified by its argument from the jhatops.table

Name: rmv.trace

Parameter: none
Purpoee: remo- a variable that was declared for trace from the trace table (if this variable
waa really for trace) or it prints an error message other~he

Name: bye
Parametem: none

Purpose: intcrpretc the DBL command6bye , quit and exit, After ~suring the syntactic
correctness of the command line, it terminatcw the current session of the interpreter

Name: dbl_hclp
Par- metem: none

Pu me: interprets the DilL command help. After assuring the syntactic correctness of the
co]l.,mmd Iinc, it opens the appropriate help file and displays its contents on the mrmm.

Name: syst

Parameters: none

Purpose: interprets the I)lIL rommand system. Aflcr checking the syntax of the command
line, it extracts the portion thal will IN cxrrutml and pass it to the syotcm command ‘systcm’
which cxcculw it

Name: dbldist

Parameters: nom
Purpose: intcrprctn thr L)lll. mmImiIIId list. A ftvr chvcking the uyntu of the command ]inc,
it lists the rango of linm qmrifiod in 111PcommiInd Iinw

Name: dld.print
Paramatera: nom
Purpose: intorprots thr DII1. rommand priitt. I’lw nrgumont for the print command conld I.w
an integer ronstant, a ntring comt:tut, ii vnriahlr slrurturo, or a ‘unction call, After rhccking
thr syntax, it dolcrminm which onr of t II(WV rmm (’xiW and printH tiw rw:ull

Name: dhlJila

Paramcteru: IIIJI.IS
I’urpnac: illlU’l)rl’Lk 1hv ]]11], I’IIIIIIIIXIII! ]ilh, It illlt’rprtilh :IIIy /i/(l rimlm:md from within Lho

dvhu~or (’nvir~mlnvnl.

II



Name: dblnext
Parameters: none
Purpose: interprets the DBL command next. Itstepsthought the program without entering
any function calls. At this point, only the neztJ!ag is set to indicate that debugging will be in
next mode

Name: prompt
Parameters: none

Purpose: it prompts the user for a commamd,parsesthe command, and calls the appropriate
function to execute the command. If the commandis either step or next or cent it breaksout
of the loop, to continue the program interpretation

Name: dbl~un

Parameter: none

Purpose: interprets theD13Lcommandrun.1~checks the command line, it initializes vari-
ables and flags and starts the interpretation of the program

Name: dbhdias
Parameters: none
Purpose: interprets the D13Lcommand aliastosrtaliwwcfortheDBL commands.After
checking the syntax of the commandJinc, it insmtsthealiaswithitsmnemonicconstantinto
the hash table of function tolmn

Name: dbl~how
Parameter: none
Purpose: interprets the 1)1IL romrnaml sho~ to display n;! current Imakpoints and traced
variables, First it displays all line brcakpointh hy examining the stap field of each line, then it

6110wsall function breakpoints by swrchilig thr Jurws(ops.table and finally it displays all vari.

abics under tram by marching the traf’~..t~fld(

Name: dMdisplay
Parameters: none
Purpo~e: intrrprct~ tlw 1)111.command displny which displ~yb some u~cful informdion about

the file being dobuggwl

Rcfcrcnces

12



[3] Uniz Prmgnwmning Manual - dbz system, 1987.



X Window System Interface for CDBX

Peter A. Rigsbee

Cray Research, Inc., Eagan, MN

Abstract

CDBX is a dbx-based dehuggw fcm CRAY
UNICOS systems. CR! initially implanented the
basic iine-orientccl vemion of CDBX, and in 1989
added an qxional X Window Sysent interfwe.
This paper dewnbes w manner in which this
interface was aided, which is unlike M approxh
@kCll by dCVCbfMS Of XdbX ~ x@b, ~C

w also describes how this approach simplified
subaqueru work 10 allow the X interf~e to run
native on a workstation.

Background of CDBX
From the user’s point of view, CDBX appears to

k nahing meat that an implementation of the
BSD dbx debugger. As with most dbx imple-
mentations,Cray Research has tied a number of
extensions. Key improvements include beuer
Foman supporl (including may syntax), suppon
for multitasking and segmentatim, impmved
links between symbolic and absolute &bugging
(new commands thaI translate bewtum machine
addresses and symbols), and improved on-line
help and error messages.

lnwnally, however, CDBX is quite unusual. Part

of CDBX consistsoi code fran the BSD 4.3 ver-
sion of dbx, and pan consisJs of cti from an

arlier Cray Research dcbuggw known as DRD.
lltis unusual combination of mflware is compli-

cated by the fwl thal dbx k coded in C and
DRD was coded in Pascal. But by combining
code from existing projects. il was powiblc to
quickly develop and deliver a prorkt to custo
rncrs, In fact, ckvclopmcru of CDBX began in

March 191UI, and a bem [cst was held al several
cuslnmcr sites only five months Ialcr, in Auguw

198U, The firm relen.scof CDBX wasimludedin
IIW UNICC)S 5.() rclwc in Mmch 19SY. h would
nnt hiwc kcn powiblc to have carried OUI a tradi-
tional “port” ~f chx K) k CRAY in h sanw
Iimcfrunw.

Uveloprnml of the ;: WindowSystemimerface
for CDBX began in January 1989, and was firw
rek.ased in October 1989. Wvelopment staned
witi ~ software pmviti by one of the
Cray developers working on the X Window Sys-
lan itself. Using the prWxype as an ex@men-
ti vehicle, a design was developed which
remains in use todayand will b describedin tiis

VW.

User Level
Alwkd LOhis paper are IWOscreendumps from
CDBX sessions, showing the key componcms O(
he X Window System imerke. Tlw first shows
the tmsic window displayed by CDBX, When h
user stare up the X interf~c, he gets a window
containing several sections. These include two
groupsof buttonsand three display windows,

The top group of bullons (quit, help, and
interrupt) control CDBX i~lf and canno( bc
removed or changed. The remaining all gcncralc
CDBX ccnnmands,and cuecompletely under u.scr
control, lhe user can add buuons, remove bul-
tons, or even remove tie entirt group and build
his own m. Cemin buuons operate on ICXI
selmtion, some on line selections,and some bring

up pop-up menus containing dclitional choices.
User-defined buuons can be CDBX commands or

user-dcllnd aliases, and can make usc of ICX[ or
line selections,

There am k text sub-windows within the
CDBX winduw. The IOp window is called the
“information window” and shows stmus informw

ticm aboul the &bugging .scssion, This inhwmu-
tion is uplamd as needed and shows infrwmalion
obtainable with CDBX status commands. Tlw
middle window is a red-only “source window”,
which displays *C cumcnl file. The user cun .MV
breakpoinL$or SCIOCIvariublcs nr other cxprm
sions by using Ihc mouse; Ihcsc sclcclions Cilll
lhcn hc refcrcnccd by crimnumd humnl~, “1’hl*



-2-

bMX’fl Wil’ldOWis 6 Rad-writC “SCSSiOllwindow”,
which is Wing more Umna Ihwtimtxi CDBX

session. When a command button is pIJshc4 fcr
example, he associated debugger command is
ehoed in tis window followed by any output fm
that command. #my keybcard inpul 10IJM CDBX
window is Uealed as input 10 he sessicmwindow
Sndispassed tolhedebuggcx.

lhere are also several ‘popup” windmvs Ihat can
b displayed as a resull of cmain aclkms. Some
of theseareshown indwother~dump. The
help button brinfi up an cm-line help window,
ccmlaining functinally-orienmd usage infama-
licm. A CDBX display cunmand allows a
usm to idemify certain variabks whose comma
shouldIM updated-h time k debugger uhca
a breakpoint or olhmviae “slops”. These vari-
ables are displayed in a sepamte window. Amd
awed other CDBX commands (such as sh and
gripe) result in pop-up windows being
prescnfed10lhe user.

We have found tial pople u= tie X imerface in
a number of ways. 11is particularly uwful fcm
nrw or casual users, who appr=iam tie default
set oi cmnmand buuons highlighting me impor-
LWNcommands. Many experienced CDBX uscm
use Ihe X interface primarily fm the source
display, and find themselves typing commands
more ofum than using the buuons. Otir experi-
enced users have developed Uwir own set of but-

tons that perform key or repcmcd functions
specific 10 tieir applications. The interface is
well-desigti fmm k sense Lhat it Icls people
easily use il me way hey wan4 rather than forc-
ing Ihcm into a panicular mti of opcralion.

Design
Now ICI us Icmk at tic iruernal design. Unlike
some public domain X irudiwes, we had tie
advanlag,.of being able LOconbwl h entire pr-

oduct, WL felt there were two different
approaches t ~e could lake. We could irrtcgrmc
the X inLi.We with he Uaditional debugger, prm
ducing a windowed debugger. in this approach,

the X inmrkc is parl and fmrccl of h debugger,
producing a very pnwcrful product, but limited m
tisc uscm who are using lhc X Window Syslcm.
Or wc could produce a .scparauX imcrf~c, but
hnvc i[ work rdo.scly witi the wadiLional Iinc.

oricnlcd dbx slylc dchuggcr. Wc chow tic
Inuer alpcmch, primarily luxatuic wc had and

s[ill hw,c a significant rwcd fcw a Iinc+ricnmd

dclwg~rr.

Thc llcxt decision was whctk we should in~o-
duce a new user curnmand for the X interface.
Unlike many Wher vendors, we chose to usc k
same command IO invoke either tie X inuwface or

the Iinetienled debugger. T1’Iiscommand would
figure out what lhe user wanlc.d and do it. It

would w be n~ for IJM user LOmmcmber
and use two different commands.

;nlC#lUdly, tholl~, WC kept LhC IWO ~ Of Lhc

prodti ~, Where CDBX is waned, a
‘dIivam program (slored as /usr/bin/cdbx)
slans up and examines tie environrnem and com-
mand line to dckmnim whelher ii should Nan Lhc
X interface or lhe Iimtienled debugger. If the

X interface is king nm, the driver execs an

ex~ulable called cdbx. x. This prm.ess dlcn

performs a fork and an exec wilh an exczut.
able called cdbx. 1, As a resul$ he user has
two prcmsses running “k debugger”. This splil
has a major advantage for Ihe user of lhc linc-
onenud tiougger; hc does not have 10pay for the
addidcmal memory overhead rcquirsd for tic X
Window System @e lhat he will not be using.
There are olhcr dvanlagcs in lenns of operating
syslem scheduling and duoughpuL

How (b time processes communicate? There arc
lhree connections ewablished when cdbx. x

does ils fork and exec of cdbx. 1, A

PCY/ttY Pir is OPCnCd by cd.bx, passed as a
command-line qlion LO cdbx. x and cdbx. 1,

and is associated willr lhc stdin and stdout
of cdbx. 1. ?hcsc connections allow com-
mands IO be sent to and ouLpuLrcccivcd from

Cdbx .1.

in addition, a one-way pipe is opcnul for da~
from cdbx, 110 cdbx. x, This pipe is used m
scrodpzkets of information for tic X imerfacc m
use in qxlating tie windows Ixing prc.sentedm
the user. These packas use a simple message
format with a number of different Packcl [ypcs,
The following Iisl shows IJW Packcl typts
cument.ly in USC:

typedef enum [

P_ALERT,
P_DELETE, /* breakpoints 4,

P_ DISPLAY,
P_ EDIT,
P EXECUTING, /* user program ‘/—

/* excrutinq ‘/
P_FILE,
P_ GRIPE,
P INFO, /* irlformal.jol) ‘/

P–MENU,..



-3-

P_S H , /“ shell xtemn ●I

P_STARTX, I* start: -r fails ●/

P_uNDIsPLAY,
P_UNMENU,
P_QUI T

) Packet_type;

P_INFO and P_EXECUTING areuacd topass
information to the X interke, m @ate the
infamatiorr window m the cumw, and he rest arc
uscdtodirat tbXinterfacem @am some
pmicular don (smh as cresting w &stroying
popup windows, adding items to pfwp maw
ad so on).

Tradeofls
Theuse of the pip and the message packas has
some very significant advantages. The primary
one is that it helps iaolaw the two FRogmmsfrom
one another, and provides a clear definiti fm
tlwif interface. It is not necessary fm cctbx. x to
execute “sccrd’ canmands to get infamalion,
nor is it neessary for C*X. x to eilhcx pwse
commands cmcred by tie usex nm to parse the
ASCII oulpul from cdbx. 1. Internally, it

avoids the unmanag~ble use of glolml wsriables

m silcnlly pw information bclwecmthe Iwo pm-
gramsm

The main disadvantage is it makes certain opera-
tions more difficult to implcmeru cleanly. For
exsmplc, CCLX. x is constrained to @inning
actions that um translale to commands. For
example, with many wmdowcd debuggers, you

can double-clitik cm a variabk to s its value.
This would be awkward 10 implement in CDBX,
Amthcr example d this is the CDBX display
command, which Ims a quite compliuuc.d imple-
mentation (although this is nol evidm 10 the
user,)

Distributed CDBX Experiment
Inthespring of 1991, an experiment was carried

out with W X in,mrfacc. In lhis eapeticnt,
cdbx. x was divided Into two exccutablcs:

- workstation cc)mponcnl

- CRAY comprmcnl

TIE workstation componcnl consisted of the X

inlcrfacc code thal handles lhc window FVCnL$,

kcytwa.rd input, and so on. The CRAY com-
ponm, which was very small, consis[cd only of

tlw CIXIC [hnl did Lhc furk/cxt!c and SC1up tic

communicationswiti cdbx. 1.

ln the wmkslatiar componcn~calls were then
addedto usctwosetsof fairly simple library rou-
tines. The original ccxlethat handled maiing and
writing from pipes and standard files was
~pkcd by cai]s to tibmry 10Util’ES ~ hanti

simple mesfage passing betwocn two puccsses
auosssockets. Andwdethalopcned andrcad
from mum files was replaced by calls to a pack-
age providing uscz~ligurabk -as to remote
fiks. No changes at all were made to cdbx. 1.

Whm the coding was eornplem, it was possible to
run CDBX in a distributed rna.rmr, in which the
X interke ran on the workstation (~ifrcally, a
Sun SPARCstation) and the “debugger” ran on
the CRAY. This produced some interesting and
encouraging results. The results were for simple

-ascs, wnsisting of a short scenario of about
u I’ JDBX commands.

First, we looked at w CPU tie on the CRAY.
Frm most users, workstation CPU time is “free”,
once they have aquircd the workstation, A user
who heavily uses his wmkmtion CPU pays no
mom than one wlw lets il run a smen saver all
day. But CRAY time is usually paid for, witi
either real or “funny” money, and user CPU time
is often he major component of the cost. Witi
the distributed version, user CPU time dccrcawd
significantly, Witi the distribuuxl verJion, user

CPU time was J3981wconds, Wilh the same ses-
sion for an quivalcml CRAY vemion, user CPU
time was ,5685 seconds, The diffcrcmceis Iargcly
due m X Window System inilidizalion, but [here

was a small time savings for each command exe-
cuted as WCII. Now at most siresLhiswouldn’t Iw
much money (maybe a fcw crxrLs), but over [tic
course of marry, long sessions, i[ would add up,

Smmd, we looked at user rcspnnsetime. These
timings wcm all made on a fairly large memory
(32 MW), Iwo-CPU CRAY Y-MP, which wa$no[
heavily Ioackd llese Paramc[crs all favor (I]C
non.dislributul vcrsicm, since swapping 01’
prmes!us is nol Iikcly, As a result, the distribtmxl
version had pmr response time (an average of
,320 scumds versus .146 second$ for the CRAY
version). The cliffcrcncc was rmliccablc uk I wcnl
back and forth between the IWO versions, M h’
response lime for tic distrihulcd vcrsmn w:I\
quile rucplablc by itself, On a smaller CRAY
syslcm or (mcmore Iwavily Imutcd, wc WINIM
cxpccl the rcsftmmet.imc fm the distrih,ml vcr-
siorr to imfmwc rclmivc to ~hc CRAY vcrw[tll,

prhaps even running Iuslcr.



-4-

Third, we measuruf data uansfersand musages.
When a messageis sem to the CRAY, it irucr-

rupls IJwSysum ad rquirca w operating sys-
tem W handle iL Som p@e fml hat X Win-
dow System clicmtsslmuld na run cm~Y sys-
Lemskmseoflhehighle velofuafflcca usedby
IJEmanyevemsuiggercdby mousemovernen:m
keytid awry. With our exprimem~ we rneas-
ti rhe traf6c with I.mlh k CRAY versicmand
lk dk.ribwed versicm. N expctd, tlw disui-
buled version showed signifbmly lessaaffic.

Fcw example, simply suw@ up the debugger
showed the follting dala Wilh LheCIUY ver.
sion. there were 7 I mewges containing a IoU] of
26372 byres of das sent from ti SUN 10 the
CRAY, ad 69 mcwgcs containing 22316 bytes
of dma scm frrn ~ CRAY m W SUN. This
Lraffic was @marily X Window Sysrcm uaffic

r? ising a kUW re~ fik 10 tie CRAY and ini.
tmlizing the complex windows in CDBX. By
cawasl, rhe drsuiburcd version showed 14 mes-
sageswiti only 203 byks scm from k CRAY to
k SUN, and ZERO messages sent from he
suNlolhecRAY.

Once tic session was underway, Lhcrewas more
Waffic w’ilh he disuibwcd version, but still much
less rhan the CRAY version. For llw simpk, m
canmand scenario, lhe CRAY version sw an
adlilional 87 rmwges camaining a Laal of
124% bytes sent from the SUN to dw CRAY, and

93 more messages contining a total 0[ 24196

byrcs scn( frcm dw CRAY 10 M SUN, Many of
lhcsc were X evenLs rcsulung from kcyboaru
entry and mouse movemcm. By conuast the dls-
uibutcd vcrsinn had 10 messages(one pcr com-
mmf~ witi 4N byus scn[ from the SUN 10 k

CRAY. and 56 mcs.=gcs wuh 773 byIcs scru
from rhc CRAY todtc SUN,

Summary and Conclusions
TheX W’mdow Systcm nucrfacc for CDBX has
km vcq successful. h IS heavily uwd and prrr-
wdcs ti wrnplc inlrdwllrm to a prmhlcl wllh an
othcrww cmnpkx irucrfacc, The dcslgn hwi
worked well: rhcrc have hccn numcmu$ cnhmrcc

mcrm w rhc Intcrfacc smcc the orlgmd vcworr,

aml lhc} have fit m WCII with the amgmal dcsl~n
And tic dcslgn allowed kw a dIWrI1’NILCdvcrsl(m

of lhc dclwggcr 10 k dcvclopml with a mmlmum
of WIIIh, Whllc II IS not ckw at (his IIIIIC II wch a

fmdu~( *III ever h rclcucd, rcwhs sh~w thuI II

hm rhc p]icnllal of rcdIIcIIg I(vMI on IIIC (WA}”

and owl hI the ml uwgr

Credits
Most of k developneru wotk on he CDBX X
interke was @ormed by Barbam Smirh. Shc
dCvlo@ Lhe&sign and impfcmmcd k inilial
vcrsiom d he imerfacc ti several subsqucnl
majw enhanccrnmm. The potmype version of
the X intdiwe (memicmed above) was developed
by JohnF=man.



!

) m miti * 1s
124 Cwlac -D us
U’5

) m1- lf (Ipp)
127 raLtrn (cnpln(l.0,0.0))2

z W- ■ Cnphdl.o,o.o);
u ● clwbl(o.o,o.o)J

printf (T)-

)

f* (l@ J14pp->~lBl++)[
cent

::
M ■ Ca(u,-l(m,cwln( w>cwff[i],o.o)));

135
m = mud(p,ol)s

1
1% e

3
raw+u)s

137

)
13e
139 I*
MO ● WaFllLU - Cro~o ● fll~ar from foad foruud (zaroc) md faedbac
141 ● (polaa) pol~lala. Th usur apoclfios Mm s~llnu raLe (after

-) bcl*laI FacLw (df) ● . . . . . ...*... .
Ear Bra* Frmqumrwu(hrsAf) . . . . . . ..l%o

Ear9FacLar (oarq)...a . . . . . . . . . . . ..a

)
E=5taPFachor (sLopfacLw# . . . . . . ..O.?5

Eu Zmo-pnaaa (durPna80)...5..5
E& Zwo Of fact (of fa*J. o.s . . . ..5..l.5

Eu Praawhnh Corm (proawh) . . ..m
[31 9Loppod in PoluEual = llna 126 An flla ●ardaa~gn.c

126 If (Ipp)
(C*) ●kap a l=
[4] ●Lap * “Oudaal,n.c-:1=
(~) dlsplau PPS 8WI
(C*) prim ~

Cmff L
(c*) prht dpp->coaff)
ii~lJ657W37

(cdlM) .



==
r

--- ,

m

1- *

Swm

alt -ID )

!*.C
W.c
t I-c
tlm.h
tl-.o

ti.h
allltla. c
till ltla. o
“I*. C



DWARF: A Debugging

Janis Livingston
Software Engineer

Motorola, Inc.
650] William Cannon Drive West 6501

Austin, Tx 78735-8598
MID 0E112

512-891-2304

Standard

Karen Spohrer
Sofrware Engineer

Mo~orola, Inc.
William Cannon Drive West
Awtin, Tx 78735-8598

MID 0E112
512-891-2080

janisl@oakhill.sps.wuX. com karens@oakhill.sps .mot.com

Abstract

A nt8@ Iimitah of curmnl debugging “tihniques is he kk of a debugging language, Unix Sys~m V Rclcasc 4
(SVR4) introduced s debugging language, DWARF. A Unix hucmationaf Progmmming Langua e S~ial In&rest

J!Group @lSIG) is modifying and enhancing DWARF, addressing tic dcbu in ncals of c Ianguagc mols
%&tcommunity. The PLSIG hopes h imc-rcsu.dpanics will me the advam.agcof D F and confcmn to this dcfacto

aandard.

‘lhis papu discussesthecurrent sums of lhc DWARF Ianguagc including:

■ SVR3 and SVR4 frle formm comparisons,

“ Canmunication bclwocn gcncrtms and consumers,

“ Innovations which underscoreDWARF’s effcctivcncss, and

● lmpx DWARF will have on compiler and debugging kmls.

llw new md improvwl DWARF debugging Innguage will bc rLwddc on hurdwnrc plmk-mns ranging from
micsoprmessorsto supcrcornpulcmw tic debugging Ianguagcof choice.



Introduction

DWARF is s SkbU
r

“ g infonnadcm farm used in Unix’
SysmI V Relcaw 4 SVR4) fa mmsmiuingsccurwcsource.
level infalnabn b- gmeralm and consumers.
CompileJS,assemblersand linkers are defined as enenuors

%Dchgging mola (dcbuggcm rxofks, disasscm km, cc.)

Figure1. DWARF Definitim

DWARF
Debuggln# kfO1’mati formatused
In Unixs

r-
V Rekue 4 for

transmltt ng ●ccurate wmrce-ievel
Infonnatkm between generators and
consume-

Thik ~ investi~ DWARF as a debugging language,
However. b undcrmnd lhc advammtc of DWARF. onc musl
fim la u objeu file formats ‘ad how ticy convey
dcbu~ ing infornuuim

t
to Ihc consumers.TTm paperexplores

k dl ferencesbctwan object file fonms and lhcn discusses
* DWARF language format. Finally tic

F
r invcsligaws

UK fkxibilily and exmnsibility of the DW RF languageand
how ~ fcalurcs dds a IWW dirrmsion to the debugging
wtild,

History

AT&T Bell MM inmoduced DWARF in April 1990. Shcmly
dwrmf~r a Unix Inlemalional F%ogrnmming Imguagc
Swial lnlcrcs[ Group (PLSK3) fonncd m foster the
development of langusgc tools. The gmdsof the PLSIG arc:

1, Develop debugging slandardsw IJUUgcncr.
atom and CU’Isumcrscould bc ckvckqmd in.
dcpcmkndy and work Iogclhcr comdy.

2. Develop Mugging sunclcrd$which adc.
qufucly bdlc Ihc needs of most prqyum-
ming Iangusgcs.

DWARF ha.. b Kkld hy IJW PLSIG as a dctiuggin
tlang~c lhrou h which tiir gmls could lx accomplish ,

&The on$inal D ARF introduced by AT&T hw hem rcfmcd
and lLshcd,by the PLSIC rind is known us L)WARF vcrsmn

Z0, hilt It is powibtc 10 supfmrt an compulcr luh~uti~c witi~
tDWARF, version O (UUSS cmC, tt, and IJunrun, Version

I is expalcd 10 & complclcd in 1993, h will mid
enharmzncms W. ~ cumemI definition, while rcuitling
hnckwm! cnmlpahtx!iiy, md cxpandin~ il$ lnnguu~c fm’us,

1, {hum is a rcghxcd uwkmurk of UNIX Sywrm

l~hnmrrics, Int, in Lhc Uni[cd SWcS und olhcr
ccxmlncs.

Debugging Strategies

Debugging information is included in exeatabk files. Prior
10 lhc inuoduction of DWARF as a debugging Ianguagc, tic
inclusion of dcbuggin

f
informiuion was nol handled

elcgamly. Debu$ging in ormalion was imertwined in object
files rarely providing an accum.c sourcelevel picture. S~ict
conbacls bctwccn tic gcneratcx and consumers were tic
norm, Compilers gcnemc-d ~ial asscmblw directives to
describe tie source language. Compilers were dcpmderu on
the assemblers undcrslunding of thes ial directives to puss

Finformalim imo h exccwable ales, Awmbkrs were
required 10 generated tags for unnamed suucums in Ihc
source cde, providin misleading sow “cmrcs to tic

f fconsumers. Additional y this method lypic Iy supponcd a
single high Ievcl source language. Tlms, when &bugging
techniques changed or ncw Ianguagc features were
inlmduced, entire software packages were rc-wriuen. This
povod 10 bc a weak and porly dcfiued approach to
debugging wilh the consumer and encramr tighlly coupled

1and loudly dcpcndcru upm each o cr.This is very much tic
case in We Unix Systcm V Rckmc 3 (SVR3) Common
Object File FommI (COFF) files.

SVR4 and DWARF offer a new upproach for ccwrvcying
source information hctwccn gcncrmorsmd consumers,The
new a preach successfully addressesmany of lhc problems

fidcrui d wib Irsditiorud metlmds of tmnsmiuing source
informalim m Mugging tools. The SVR4 Exumsiblc
Linkage Formal (ELF) pmvidcs a flexible sum c mcchnnism

fwhich allows gcncmtors 10 U,SCtic DWAR Ianguugc m
Communicmc a more dcta.ilcd source Icvci piclurc m iLs
consumers, DWARF is flexible enough to handk any numhcr
of source Ianguugcs.and is easily exmnsibk to hmdlc ncw
dchu ging u?chniqucs and fcalurcs. Equally important SVR4

bond WARF climinam lhc number of comracis hmwcrn
~cncralurs, such as hc compiler, asscmldcr and Iinkcr,

Object File Formats

cot”F

As mcmioncd curlier, prc-SVR4 AT&T sysmm~ piIw
in(ommiion 10conw.mcrs USIIIU(’OI”T: [ilc Itmnm, I’hr ( Y N‘1~

2



Figure 2. COFF File Fomm Figure 3. ELF File Format

Fik Hder

section 1 Header
. . .

Scctiar n Hcackr
Raw Dam (OCSeCdon 1

. . .

Raw Dam frx Section n
Relocmon Info (CWsect. I

. . .

Relocation Info foc Sea. n

Line Numbem for SaL 1
. . .

Line Numbers for SecL n
Symbof Table

C(3FF file mdons areLrdilkmally usedexclLJivcly for text,
data, and miscellarwms ircmssuchascommen~, There isnot
a redefined ~tion dcdicatcd 10 debugging information.
C&F basedgemeralorsam Iimilcd m generalin

%
debug

information Ihal can be s!mxl in k prcdefined C FF Iinc
numbr SWLUIC and W symbol ublc stnrchm. In addition,
since lhc symbol Labk and line number section holds uII
&-bugging mformalion Ihe @walof must understand and
produce a unique *1 of s@nl pfedcfirmd symbols [0
-tw scnwcesmclurcs such as inner blinks, and complex
dam slmcuucs. These unmuc predcfind sy ntmfs must bc

‘1ramgnized by lhc asscrnbet M IJUUcomecl information is
passed IO dw consumers, This appcmch iomns a highly
dcpcndcnt relationship bclwccn rhc generators (compiler and
as=mblcr) and Iimils tie infcumaiion which can be pnsscdw
he consumer. IAsdy COFF was wriucn with tic C
pograrnming Iang

%
e in mind. it is very diffiiuh 10 add

fcmures required 10 umcly suppon oticr Iunguagcs,

ELF

Unlike COFF, E1.F fik wmions arc nnt Iimitcd in tic sam
mnnncr u COFF’S prcdclincd Iinc numhm luhlc und symh]l
Mc, ELF is similar w a giaru conluincr for infomumon, l’hc
conraincr is split into sectionsfor

r
ifk informalmn. Ilcsc

saxions include bul are not Iimi m lhc traditional teal snd
dnls. !k.clinns cm alw Iw Mmcd by Lhcopcrmin~ xyslcm or
m Im dclmcd hy *C uw, Thus,

r
“ifiu inlomumun, xrxh us

dchug~in informtui[m, is
F rk in a unique m! scpwulr

mclion o h objccl file, E .F does mI impow inlrr-scctl{m
dcpcndmcics, Figure 3 dcpkLs the El J; Iilc liwm:II,

l=%!%=
I . . .

I Section n

t

I Section Header Table

Debugging information is self comained in the ELF ,dchug
and .iine sections. The .dek ~tion coruains source

&information dcpiclc-d by lhe D ARF language, The .linc
section conlains source line informati(m for associating
source fiks with rhc mxhinc instruction addresses in tic
exmuable, The self coruaincd debug information, aflows
poducers m use ~xisting directives to crc-mc the
debugging information in tie ob’ea file, unique assembler

/directives 10handle debugging in ormation arc not required.

DWARF Debugging Language

This scclion prcscnL%an inrrnduclion 10 rhc COncCpLsand
infonnaliwr available in DWARF, This dcm rm cxhmmivcly
ckscnbe DWARF bul is intended to give u broud
undersumding of the format. For funhcr inhnulion the
ruder should mfcr m lhr DWARF spxification[ DWA9 I ],

Language Structure

DWARF m iI l:u)~uugc dots not fuvor n sw ific
~gramming Ianguagc, rulhcr it is mc.dia for communicatin~
accurmc source infwmalirm bawecn gencrtilors und
consumcm.DWARF is an qrcn ended Ianguugcnllowing l’t~r
addilion of ncw infommlinn as ncw lun~uugcs or rww
dcbug~crcnp~hililicriarc inlmduccd,

SOurcc Ianguagc information is pawed 10 I.hc umsumcr
through a low Icvcl rc

r
scmalion known M a l>chu~glng

Inforrmnhn Enuy (D1 ), Erich Dlk dcwitrcs u sin~lc cnmy
in lhc murcc progrum (vsrinhlcs, sutwoutirws, CIC,), A scrl(’~
of DIE am used u) dcwritrc an cnurc source progrwn, I;IN41
DIE mny purcnl or own (mcor more 1)11;,llr purrnllng
cmrccfn providrs a mums of rlcscritrin~ cfmlplvx
fm rummm~ rurutlurm ml source file inlcr.mlutionstlll)j,

5All 111owned try Ilw SUIIW parrru form Msihlin chain, I.;KII
[sidin~ rcfcrrmccsorhcr 1)111in Ihc chuin Tlw c mrr 1~ctdwl

hy a null ~ihlm~ rcfcrcrwc. ‘lli~ ~mnling c(mt!rpl ltmll~ II
lrcc wrucmrc dmcrilmqr rhr wmrrr pro~rwll whl(h
consumcm can cmily mwcrsc wtwn scrkm~ WIIIKU
inhmmlli(m, ‘Ilw 1)11;dmcrihmy k u)mplmnm UIIII I\ UN’
fsmm of Ull Sllkqlk’111 I )11(,

3



Debugging Information Entry

Each DIE ccmsisuiof a die length followed by an identifying
M nsrnc folk$wcd by one or more aluibulcs, DIE format is
phud in Figure 4.-

Fuure 4. Debugging lnfoimation Enby.

I
kx.offW.<*iti-kn@>TAG-m@me

AT-mrrnamc(vak)
AT.aurruunc(vaIuc)

The DTEkngth iss 4 byw unsi
rin&EwhO=va’u’ismetotal numlwz of bytes in h [E. A D Iengti less dmn 8

bytes rcprcsaus a null w padding DIE Tlw padding DIE is
USWI 10 satisfy ●lignment mnstrainu imposed by he
archimxurc. A 2 byu lag name identifies the class of
information in W DIE. llc list of rcscrvcd lag names are
Iisd in Figure 5. The DWARFs ific.mien has tmsigncd a

rvalue LO each rcacmcd lag ruune. n addition to rhc rcscmd
lag names,

T
Iic.aliens may Wine

?
names anll vah,rcsin

k range AG-b-uwr Uwough AG_hi-user withoul
conflicting willr current of future syslem-rkfincd lugs,

Figure 5. Tag Names.

TAG-crTsy.rypc TAG-CICSI-IYpC
TAG_corrIpile unil TAG-mtiy~inl
TAG-anumcrmion-typs TAG. kWSld+USmCICl

TAG. fcwmat TAG@.M-sulwmslmc

TAG@hc1-vcri~hlc TAG-hi-user

TAG-impswl,cd_rMmmkm TAGJnlinc-Mmmlinc

TAG_lcM TAGJexicil_hl(wk

TAG-lo-user TACi_fOCC1.VUiShlC

TAG_memhc~ TAG-memtmr furwliun

TAf3~in~ TAG-~ inlcr_tylx*

TACi-rCkrcnce-Iypc TAG. SCI-Iypc
TAG_souKx_tilc TAG.ntring_lypc

TAf3-srwnm_typr TAG_suhrsmlin~
TAG@WdJW_IYp TAC_Iypcdcf
TAG- UItiOVYpC TAC1-tmspifid~srsmclcrn

TAC3-vcrisnl TA(i-with,, ILMI

1

Altribules arc valuchmnc pairs dcscrihing rhcchuruclcrislil’~
ofs uinglc rmurccentity tcin defined hy n DIII, Allrilwlcx

%am rhc mcm by which DWA F:

● provides cwmumcrs u mclhod u) find IIIC I(w:liilm01
pn~mm variuhlcs,

“ dclrrmincs army sufwcripl hounds,
● calmdmcs ltw rmurn addrcs* ol u suhrtmlmc,

“ finds Ihc IMM akhrss of lhr suu’k,m
● dclrrminm thr nnmc ol vurudh.

Auributcs are rcpescnled asa 2 byte name field followed by
fhc armromialc value. A Iisl of resend au.ribu~ names is
inclu&d b Figure 6. Similar LOlags, the atwibutc list ha~ a
user defined range, AT-lo-user Lhrough AT_hi_user.
A@icaLicms may define the usc of auributes in Ihls range
wmhoutconflictingwith the syslem-defined values,

Figure 6. Auributc Types

AT-bil-oKscl

AT-by m--ize

AT_dcrivJisl

AT-discr_vcluc

ATJrcmc-bcsc

AT-hi-user

AT-imprl

ATJngu-gc

ATJamion
ATJow~

AT-mcd-fund-type

AT-ncmc

AT-@uccr

AT_smn-Eo~

AT_suinLlagds

AT-mbscr_d~lm
AT-visibility

AT_bil_si=

AT_mmp_dir

AT_discr

AT_elcmcnlJisl

AT_fund-rypc

AT_high_pc

AT-inmmplctc

AT_lo-user

AT_loclisl

AT_mcmbcr

AT.mcd-u-d_rypc

AT.ordering
AT_sihling
AT-suide_sizc
AT-s~l_lis[
AT_uscr_dcf-Iypr

Attrihutr values nrc onc of tic following forms:

● address- Immtion in tiddressspucc,

9 refcrcncc - mcmhcr of dwarf dcscrip[ion,

● consranl . uninlcrprclwl dula,

● block . nrhirrury numhcr of tIyws, or

9 slrin~ - null -rcrminm.d urmg,

Aurihulcs muy or~lyussumc(Iw VUIUCform M spmvfwd lr~III(S
DWARF sfrccific’ulion.lllc form O( lhc vuluc m Cm.wdthdm
lhc auritrulc numc, For cxurnplc IIW AT. numc trluibu[r IS

Mlwnys uf form swing. DWARF dcfinrs B SCI of hmrl
cncodirrgswhich arc nppro riulr for cmh Iulrihu[c I IW. ‘1’[1r rrrurinfuintic flcxihilily m cxkwrsihilily of DWAR ‘, nmsl
cncodin~s htivc u user dcfinuhk’ rungc, tl~r upplILmI(MI
qxcific inf(m)wi(rr),

4



F@rc 7. DWANF Examples

cLanguage Source Cude

main(argc,a’gv)
inl argc:
char ●argv[];

(
inl k=lO,
(

inl j=3;

L.

“=l.B

, kc”

k~;

)

DWARF REPRESENTATION

0000: <43> TAG compilo_unit
AT_afilinq(Ox14c}
AT_nama (“’test . c“)
AT_lanquaga (Lang_C89)
AT-low~c(x2035C) (1)
AT-high~c(x20360)
AT-stmt_list (OXOOOO) (2)

002b:<47>TAG_qlobal_mubrout in.

AT_aiblinq(Ox145)
AT_nma(’’min”)
AT-fund_typa (FT_intogor)
AT_lowflc(Ox2035c)
AT-hiqh_pc (-x203bO)
AT_comp_dir(’’/hommine”o” )
AT~roducor (“nam./vorsion”)

005a:<30>TAG_fornul~brametor
AT-mibling(Ox080) (3)
AT--nama(”argc”)
AT_fund_typa (FT_~nt.g~r)
AT location(<ll~OP bao@rog(FI

5P_conrnt(Ox10) UP_add)(4)

Example Annotation

(1) AT.. Iow.Ix ml AT-high_~ vrducs u.rc Ihr rclociml
uldrcsws o(lhcfirs[machinc illsw[i[)n gcncrum~l[t)r[tlc
compilmi(m unit und lhc first mwhinc instruchon INSI Ihr IIISI
cxa’luablc instruclkm, rc.qmlivcly,

(2)Al. wml-.li~aurihu~ value is urroflxcI In Uw,linr wlion
rckwcnuin~tic firsihytc ofinfmrnulion f{~rthist’(lll)ltiluli~~t~
unil. lIw ,hrw smion is uml h) cmdm wmrr.1tw’1

.—
0080:<42>TAG_fozmalflarametar

I
I

I

AT_sibling(xaa)
AT_nama(’’arqv” )
AT_mod_fund_typa (<4>MOD_pointmr

MOD_pointer_to FT_char)(S~
AT_location(<ll> OP_basereg(FP)

0P_cont(14) OP_add)

00aa:<24> TAG lexical_block
AT_aibliiig(O141)
AT_low~c(020374 )
AT_high_pc (Ox2039c)

00c2:<25>TAG labl
AT_aib~ing(Oxdb)
AT_name(’’here” )
AT_low~e(Ox?n3~n)

00db:<35>TAG_local_variable
AT_albling(Oxfe)
AT_nama(”k” }
AT.-fundamental_typa (FT_lnteger)
AT_locatlon (<ll>OP_baaereg (30)

OP_const(OxB) OP_add)

00fe:<24> TAG lexi:al block
AT_aib13ng(Oxl~)
AT_low~c(Ox2037c)
AT_high_pc (020394)

0116:<35>TAG local variable
AT ●ibllng\~x133)
AT_name(”l’ )
AT~fundam&ntal type(FT_lnteger)
AT_location(<lI > OP_tasereg(FP)

OP-const(Ox12) OP_adcl)

139:<4> (6)

13d:c4>

141:<4>

145:<7> (7)

14C: (8)

5



(4) llw AT_lm@m aaribute is used LO build complex
dlmsin,q expressions. The AT_lcahn value is of lype
blrxk, whxh isncount foflowed by a contiguous SC1of bym.
DWARF defk? a ~ d basic twddin blocks by which tie

fddress of lhe object is dmennincd. n tie example 16 is
dded 10h VafW in w Fmme Poimer (FP) regis~, Thai is,
h Io@cm of argc is stored at the addresspointed 10 by rhe
Frame Pbin@ plus 16.

(5)Tlw AT.mod_fund_lype am’ibule defines variables which
me ~nkl by qplymg me m more modifiers 10 a
fundamental t .

r
In IMa mae argv is *scribed as a pinier

to a pointer of undamemlaf type ctikr.

(6) A null reccml, h end of sibting chain.

(7) A pading recmd, to align debugging information to a 4
by!c boundary. Sornc archimmea require alignment of
=liona.

(8) Beginning ddrus of the next compilation unil. Many
execumble pi= of software are comprisal of soflwam
moduks. Dwarf has - cmeept of compilation unir.s, to
descriLM k modules making up IIU excmable.

Compatibility

DWARF imp consuaims on additionsto the standard and
user dcfiiitions so b all versions and implemcntarions will
remain com~tible. Figure 8 enumeraus lhc compatibility
rquimmenti, -

Figure 8. Compatibility Rquircmem.s.

1,

2,

3.

4.

New auribums must be added in such way

IJml a dcbubger may wognim tic format

of a ncw Iurnbutc vafue wittmw knowing

the ccmtem of Lhnlauribulc vnluc.

New uvibu~s maybe included in any DIE

as long as the semantics of any ncw al-

wibutcs do not ahcr lhc semanticsof prcvi.
OUSIy existing mwibums

New lags raaybecrcmedas longas theSC.
manlics d h newly crcmcd tags do not

conflict wiih h semanticsof prcvir.rusly
existing mgs.

Ncw WIUCSmay tc cmti for tic visibil.
ily mribule. Any ncw vulucs w crcalcd
wmdd have language de~widcnl mcsnings,

In ddilinn, DWARF consumers cncounwring applicmion
specific mforrrmlion or spccificminns from faucrversions urc
cxpeclcd 10 INII(WC inforrnnli(m which Ihry arc unublr u)
intcrprcl. Finully, m pcviously diwus,scd, uwrs dcfinmg
spphculion spccIfic

Y
s, allrihulrs, or ullrilmlr vnluc% m

CXIXlCICd 10 dcfirrc on y tho.sc wducs spccificd m Llw user
nmgcs U1 a% mn 10 conflict WIIh Ilw l) WAftl’ spccll”i~timm,

These few compatibility consuairus ensure rhat all generamrs
and consumers of DWARF will successfully imeropcratc,
regardless of who and where hey were develop!,

DWARF’s Impact

Dwarf impXLSsource-level debugging.

1. DWARF is a foundation for building ~ fkxi-

ble, exlemdablc, and effective debugging en-
vironment.

2. DWARF is a (khugging language providing
inleroperabilily bclwoen generatorsand con-
sumers.

The DWARF language is a solid basis for building a
debugging environment. DWARF is easify expanded 10
include new language features d application ~ific
feahmes. by adding new tags, auributcs and auibum value
encodings. Add.ilionaHyDWARF servesasa solid building
block, suppcming state of the m debugging techniques, As&I
mull, Ihere is nc need for a single vendor m suppori iI
muhitudc of dcbuggir,g mclhcuis and Ianguagcs, DWARF’S
flexibility and extensibility encourages reuse and
commonality.

DWARF is a debugging language providing inlcro])crabilily
between cnermors and consumers, DWARF IS a wI(

fcoruained anguagc using generic ccmlainers and archiuxmrc

r
vialed dire.ctivcs and mstruclions 10 convey information

Iwccn gcneralom and consumers. As a sumd akmc
language, DWARF is not dcpcndcm on a single cqmrating
symem, or object file formal eliminating tic typical
gcncralors and cmsumcrs ConUKL\, As a rcsuh, gcncramrs
and ccmsumcrs do no[ rmcd m bc buih and maimaincd al iI
singl? site, allowing soflwarc dcvclolxrs 10 spccializ,c and
modularim soflwurc packages, pnrcntial Iy decreasing COSIS
while increasing SOf[warc quufity,

T%c PLSiG has puI much time and cffon into dcvclnping rhc
DWARF Ianguagc guurunlecin~ IJUUtic fcxuurcs allowed h)
tic DWARF hmguugc arc implcmcnlcd in ~c most cfficicm
and cmnpwihlc way. II is easy m adupl snd conform h)
DWARF muking it a dchugging Ianguagc of choice. Thus II
can bc cmily incmporaled ml used in mnsl ,sohwurr
cnvironmcmx from Lhc micropr(~cssnr 10 k
supcrcompulcrs,

The U1 PLSI(;



References

[SVABIWI Sys\emVA#icaion Binarj lnte~oce
Unix Software Operation AT&T1990.

DWA91] DWARF Debugging Iqfoma\ion For-
mat, UNIX@ Imernational Programm-
ing bnguagcs SPial InterestGroup
1991.

[(X90] ObjecI Compatibility Standurd, 8SGpcn
-sortiutn IA!. RCIU l.l, April19%1



Watson: A Graphical User Interface
Environment for Debugger
Development

Randy Munish, Cray Computer Corporation

Abstract

In relay’s graphically orienkd user interface (GUI) environment, the need for
high-quality, user-friendly interfaces to debuggers is almost as impcmanr M the
underlying capabilities of the debugger program itself. To suppcm even the
simplest of user interfaces, developers must become experts in GUI design and
development. In response to [his problem, Cray Computer Corporation has
developed the W~tson’ GUI environment for application development.

Initially developed for usc with our enhanced debugging environment, Watson
has evolved into a general purpose GU 1development system which allows
novicewindow-systemdevelopersaccess to complex GUI ctipabilities. Wdtson
provides a consistent, reliable, and tested object-oriented interface to a number
of GUl environments including Athena Widgets, 0SF/Motif2, and OPEN
LOOK3, This interfiice allows [he Cray Computer Corporation debugger (bdb)
lo run in any one of these three environments, without chimgc to the
application, Watson provides for the changing ir!erfiicc to the under]ying Cl] I
selcckxi, while muintuining a consisten[ interface ior the application developer.

STN3001B Cr~y Compulor CorporalIon



Prototyping debugger user interfaces with Watson is expedited with an
interface to the Tool Command Language (TcI) developed by Ref. John
Ousterhout of the University of California at Berkeley. This interface allows
quick and easy prototype development with the additional benefit of reusing
most of the prototype code in the developed product. All of the user interface
in bctb is conttdled through a set of Tcl procedures which are interpreted by
Tcl into calls to Watson. l%is setup allows easy customization of the interface
by the developer and the end user,

Overview

Watson is a set of Iibraxi:s which supports an object-oriented approach to user
imerface development, me object-oriented flavor of Watson closely matches

that which is found in the X Window Sys[em Toolkit. Watson uses commercial
toolkits to piovide various look-and-feel standards such as OSF/Motif and
OPEN LOOK, along with public domain products such as Athena Widgets.
The application programmer is presented with a consistent programming
interface which supports the major look-and-feel flavors.

Basically, Watson is a standard set of user interface objects which, when
combined in some logical, coherent manner, provides a graphical user interface
10the end user. In general, Watson objects may be combined in any number of
ways to create a unique, tailored interface for any application. This paper looks
at the development of bctb, the Cray Computer Corporation enhanced
debugger, with specific emphasis on the user interface.

Developing with Watson

The first, and most important step, in developing bdb with Watson was to
completely separate the GUI from the debugger. This sepmation allowed easy
testing of individual components, and will allow for easy distribution of the
debugger across differem plaiforrns and architectures,

In addition to easy GUI development, bdb (through Walson) supports three
different look-and-feel flavors (OSF/Mo~if, OPEN LOOK, and Athena
Widgets) wilhout change 10the bctb user interface code, This advantage tillows
the debugger developer to concemritte on developing a consistent user
imefi~ce without regard 10the low-level details of various toolkits.

. ..-. .. . . . . ... .— ..——. ..— . . ..- _______-----

9TNm16 Cmy Compulor Corpomllon

.—

2



SopwMotho DebuggerIromtho Us.r Int.daoa Watson

-m 1 Mb Development Steps

EEEl

Tk debugger stare o::”* an ungainly collection of ideas

combined inio one monolidu~ application. In hi example.
AECD represents junctionali~ of [k debugger.

n n n n AfuclioMl &ctwnposilbn of 1~ capabilities of (k

AIM CIIDI
&bugger mkspiace whhout-taking ;IUO accom-t \k GUI.
Tk funclions w =pramd into individual components

Tcl
1

A Tcl inte~ace is ad&d 10 tk &bugger which allows

convenietu lesting and evaluationof tk ctqpabilities of the

HIII

&bugger AI this step, a)er the applicatwn is debugged, a

cotrqle!e command line interface is available.

I Tcl I

mlEi!El
GUI prototyping skins by including
Walson in the application. Once

pmtoryping is con@e\e, tk resuhing
debugger is ready for public comuwrpion.

Separate the Debugger from the User Interface

The firs[ s[ep involb,ed in developing the user imerfuce is [o completely
separate the user interface from the actual debugger. The developer
concentmes on [he capabilities of the debugger and designs lhc application as
a ser of components that, when combined together, provides iIll the capabilities
required of the debugger. In several ways, this first step is similar to a
functional decomposition of the requiremen~s for the application,

During development, bd,b used n functional decomposition to build the core
capabilities of the debugger. This core capability was contained in a library that
forms the busis of till debugger products at Gay Computer. The Iibrtwyhas
progrtimmutic intcrftices which UIIOWcomplc!e access to the detwgging
environment such as:

————— -——— -.- . ..— . .. . ...- ---

slNmOlb Crq CompumrCorpor~llon 3



Build Iho TelIntorfaeo10th. D@bugger Ws180n

● opening and closing a running process
● starting new processes under the environment
● setting and deleting breakpoints

Build tha Tcl Intoriac. to th. Debugg.r

After developing the actual programmatic interface to the debugger, the next
step is to build the application binding to Tel. Although this step is not
required, the prototyping and testing advantages of Tcl make these bindings
very productive. The bindings are simply C routines which export the
individual components of the application to the Tcl environment.

At this point, Tcl becomes an excellent tool for testing the various components
of the debugger. Ey developing special internal inm-faces to Tel, the developer
has a unique capability to test and debug the debugger or application. Tcl
provides an interactive interface which allows complete control over
parameters used during the debugging process.

Prototypa and Build the Graphical Uaar Intariaee

At this point, the ctebugger developer can begin to use [he capabilities of
Watson to prototype a GUI to complement the line mock interface provided by
Tel. The interactive nature of Tcl allows for fast turnaround times between
changes in the user interface, allowing the developer to incrementally build the
interface one component at a time and test the individual components at each
step of the process.

Watson and bdb .

Several special capabilities were added to Watson to support the unique
requirements of the bdb debugger, The most notable addition was a code
display cliiss which displays program source code with an optional status bar
and icon panel. The icons are cumently used to indicate breakpoints and the
current program line. A status bar w the lop of lhe displtiy shows [he currm
program ntime ulong with [he currem line number. An example of the code
displtiy class muy be found in Figure 2.

The code disp!ay class cm display up to eight columns of icons in the icon
panel. The icons muy be defined by the upplictiticm progrtimmer or by the user,
and are resized by W~lson Imsed on the font selected by the user,

The code displ:iy UIUSSis nm Iimiwl m use in debuggers; it wus designed to bc
flexible und h[ls sevcrtil olhcr uscs in other iippli~i~ti(]r~ environments.

—-— ------- ,—...-.

STN30015 Cmy Compulw Corpormlon 4



Mb User Intoriaw Watson

~m 2 SamPlo Swrw Codo Dls@ay(OSFMAOW)

Status Bar

kon Panel _

e

b

e

4
u Is

●.sr v - qv:
!t.fl o - Iflle;

●.notty - nflag: Source Code

If (key] (
a.cnvls- CmLtent-qet(key):

~ ~$~t-dostrov-kcy (kay. 01:

●.ofds - 0:
)

Y-

The displays for the OPEN LOOK and Athena Widgets versions arc basically
the same as the OSF/klo[ifversion shown in Figure 2.

Fuwc versions of the source code display class will allow the user to add the
display of individual line numbers in the Icon Panel to the lef~of the source
code. Scvcml users have indicated that, allhough this option will require more
screen real csta~c, the benefit of having the line numbers visible will enhance
readability, This feature is being developed as an op~ion to the source code
display atid individual users may configure the class to toggle this capability on
or offal any lime.

Other enhtmccmcmrs may include making the icon panel Scnsilivc m user
mouse clicks. allowing the user 10SC[or clear u brctikpoint by sclccving ttw
breakpoint icon on a panicular line.

bdb Ueer Interface.—. . —.—————.,. -.—.,.-.—. ,.-_-________ ..

The code display class i~just onc uniqllc ptirt of the ~xmlplctc bdb G(II bdb
htis been scpa.r~~cdinm three differcnl windows.

Mb Main Display

The rwin dI\pIiIy (shtnvn in }:lgurc lJ ISlhc tiril uimhw II)grccl users whrn
[he:; Inv(Ac Ihc w L(mInJnd l’h I\ min wInd(m C(VII:IIIIS :1 Ii\t (}I[tic tmurr{*nl

Smaale Cmy Compulor Corporollon 5



Mb CodoDh@ay Wat80n

progxamsbeing debugged by txtb, a quick access button area, a command entry
and command history area, and a joint bub and program output area.

Flgum 3 Mb Main Dhplay (OSF/Motl!)

—.

-w * -t
............................................. ................................................................ ......................... ...
~ I.M

List of Active Programs

_ Quick Access Buttons

*tJ Md SUP I SWPII -[ ~ I “tmwn] strpJ _ 1—- — .— —............................. ............ ...... .......... .—.....-.—-----...-.—...,.-..-.,--p—..-..-.—. --

Command History List

h

bdb Output

b~ C91Mllti:
c

Command Entry
r

...—.—. —.— -------- .. . ..... —... -— - ........ ....... ——. - . ......... —----

- -.. -- . .- —- —— ——
a mlllts

11
Mb CadO Display



Mb Auxlllary D18playx W8180n

Fburo 4

Usm may select which process is active by selecting one of the entries in the
currcm process list. The list also contains the process id, the current scale, and
an indication of which process is cumttly being displayed in the code
window.

Mb COdOD15play(OSF/Motif)

F urrent Process List

kmxs 1.4t

,73937 Current-Procoss Nw Process

..” . . ...-..”....””. . . . . . . . . . . . . . . . . . . . . . . . ... ., .,,.-.., . . . . . . . . . . . . . . . . . . “.. ,. .,,.... ,,, ,,, ,,, .,, . . . . . . . . . .

“,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............. ................ ,,,,,.,,......,, ..... ...

.,,,,.,,,.. ... ,+. .

13iiil&!2Lb!4A!!L.J2k!ilJKw!!!EAl&iu!!il
4

—. -.. —

ITwrLc ~Qulck Access Buttons Y

r4wncl (Stdlo. h)
nci qtype, h)

ninclude ~strlng. h~
Mnclude 4sys/tyms. h~
Wlnclude fsys/tlnw, h> Source Code Display
Uinclude (fcntl, h>
Iltnclude melloc.hz

r

1... .Winclude Ctools/l lban/orntcl, hJ
!

Mb Auxlllary Display.

The third [ypc of M displtiy is iIcolleuion of uuxiliury windows which
supports lhc nmin und wdc displuys, Omcmly, bdb himu complelc on-line
help fiiuili~yIIIiII displtiys mull pugc fonnu[md documcnltiiion in IIscrolluh!:
text window, Future cnhun~qctnenls10the Wu[son swndurd will idiow !’uII
hypcrtcxl-like help ctiptihililies m he twill inm every W~tson bused upplicti[ion.

In addition to the help displily, bdb contains IIunique SOurcc Cock Ntivigiilor

displily [Iml UI1OWS[he progriinln)cr [() browse through illl files ussoci:lfcd with
the program being dchuggcd, The Nnvigtinw (shown in I:igure 5) is simply Iwt~
lists, Ihc Icf[ con[ilit~i;lgI!Wcurrenl sl}urcicfiles fron] Ihc progrtim, imd h right
cun[;iining Ihc funclions l(mnd in (mc of the sclccIcd S(MKCIilc\,



Wamon ●nd Other Appllcstbrm Wat80n

Flgum 5 Mb Source Cod. NavigatorDlspley (OSFMOW)

m
3/nush/src/tool s/drtw/m~n. c i
“3/nush/src/tool s/drlvor/vorslon. c ;
3/nush/src/tool s/llbwatson/convwt. c\
“3/msh/src/tools/llbw8tson/croato. c :
3/msh/src/tool s/libwwson/vmrs40n. c;
“3/mmh/src/tools/llbwl/spP.c ;
“3/msh/src/tools/llbml/button. c :,
“3/msh/src/tools/llbml/coro.c :1

“3/msh/src/tools/llhol/unf ts.c ~’
“3mmh/src/tools/llLwml/nmu. c !

3/msh/src/tools/llbml/loqo.c ~
“3/m,wh/src/tools/14bwol/llst. c ;
3/msh/src/tools/libwl/lmbml .C :

.
...

.....................
L.!zH-J

sdoctmm@lnu19m8snstl”fGsphy mrlmcuomshu’mmouwl~t
monlrybllhaFucUons Mb’lmvouu Ullwcacodo**y.

..,.- ”, .”.-.-.., , . . . . . . .. -..-”... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -..,. ”... -,.+.-. .,... . . . . .-. -”-.. - . . . . . ..” . -... -----

When a source file is selected in the left list, the right list is changed 10show all
of the functions in thut source file. When a function is selected in the right list,
the current code displtiy window is changed to display the source code of that
function, The Navigator significantly decreases the amount of time a
progmmmcr takes to find a function in a pa.nicular file,

Watson and Other Appllcatlons—.-.————.———.- —.—.-—-- —. .—-.—-.-———-——-..- —.- ..—-— ————

Ahhough W~~sonbegun as [he user imerfuce product for our debugger, it has
grown 10encomptiss [hc GUI needs of tilmost id] upplicmions developed by
Cruy Compum Wutson suppons [he needs of severid CIUSW,of upplicti[ions
from n Visutil System Monitor that rnonilors various parameters and vidues of
running processes, to iI Visual System Administrator thtit pnwidcs un ctisy-l(I-

USC,griiphiad inlcrfticc 10till Iypcs of sys[cm udminis[rwicm msks,

I“hc Ixncti[ of Ilsing onc product for 1111GUI needs is obvious 10 [hc user, till
uppliciltiolls dc~clopcci with Wiitiotl will huvc u uonsis[cn[ look-und-feel Ihu[
rcduccs Icurning lime, incrcuscs produutivily, und tillows emy end user
CllSl(lIlli7.illi( ~ll of lhC (l(Jlt

Cr~y Compulor Corporallon



Acknowlodgnmts Wst80n

8TN30015

Acknowledgments

The author wishes to acknowledge the help of a number of individuals at Cray
Computer Corporation who participated in defining the various capabilities of
Watson and panicipate.d in testing activines: Scott Bolte, Ben Young, Darragh
Naglc, and Tom Engel (the whip-wielding manager).

References

Information about Tool Command Language, along with the latest source code,
may be obtained from John (hsterhout, University of California at Berkeley. A
mailing list exists which is devoted to Tcl questions, To join, mail a request to
~cl-requesr@sprile.berkeley.edu and ask to be included on the disrnbution,

Author Information

The author can be contac[ed by mail at Cray Computer Corporation, 1110
Bayfteld Drive, Colorado Springs, CO, 80906, or by e-mail at
mush@ craycos .com.

Crsy Compuiot Corporsllon e



Watson: A Graphical User Interface
Environment for Debugger Development

●

Randy Murnsh

Cray Computer Corporation

Gmphkal User Interface Design Goats

● W wanti to rapidly bild displays thatarc

- Conciw
- Unambiguous

- V ual

- t-licrarchical

● Wc also wanted to design displays thatam:

- Easy to learn using built-in hetp faalities

- Easy to use

- Easy to customize
- Consistent acrosa applkathms

- Easy to ckvclop and maintain by the devel~

- Ezi5y to @ to rww platfcmw

@

-Y COMR!R CORPORATION
s@lum Tbeh



WdtsonOvefvk?w Building o Debugger wilh Watson

●

9

●

●

●

— —

● bdb pmgrmsed thnmgh several stages during the development
phase-.

- bdb corecapability= identified by a fumtional
dccomp@ion of ttw requiremmts

- development of theqxdd.ities

- Tc1interfaceadded

- GUI added

E “–----’ “

fk~m-a-a~

-.- ~~ 4A hhz.

Uuud

@

CRAYCOMFIJIER CORPORATION
S8° rbok



Mtsonandw

“ ~.a; m~hlitim were added to Wa&m to suppt the

~ .-. ..-. .- . . . ... .. . . . . .. ..

S-sw ~-===-
.. ——. ————

r, -m

L[
J.-.

-r au

,W - -mm. ,.

Mb UserInterfoce

● Cmnprkd d th~ diffemmt ~ cd displays

- Main Dispby

A single window which controlsaU programs currently
kwingdebugged by this instanced Mb.

- CodeDisplay

One de display IScmatd h every pgram curmmtly
being debugged by Mb. This ccmtains the scmucecode
display class and a list of all cutnnt ~ assodated
with the program.

- Auxiliary Displays

A complete, menu~ented lwlp display thatis available
at any time.
TheSourceNavigatm Display which allows the user to
quicklynavigate tlwwughall availablesourcecode in a
!wOgram.

mCRAY COM~R CORH3RATION
Srjhwv Td



bdb Main Disp+uy(OPEN LOOK)

.. . . ..-:. . .... . . ..

—

m-.. *-) -*J - ““ .’: ““. “’””:;““”

“’””1
T

Mb Main Display (OSF/Motif)

al

CR_AYCO%lHXER COWCJRATIOS
Softnn TLW&

@

CRAY COMPUTER CORPORATION

Sojhtwt Toeis



Mb MutnDisPIuy (AthfKO bdb Code DlsPlay (OSF/Mottf)

..— — —. - m —=”—-”----f;n--”--f;n

EG==-==-=l
!f======= ==’=4

a!)CRAY CO.WMTER CORFORATK)S
SOftnn Tooh 4B

CRAY COiMPUIER LW~RAllON

Sojbwrt Took



Mb SourceCode Navigator(OSF/h40tt0

4 :=,= .-. ,,d.: . . .. .... . . .

a)

CRAY CO.WHTER COU?ORATION
Sof?nm T&



Mb SourceCde Nav@dof (OSFIMottf)

(B

CRAY COSIW1’ER CORPORATION
SO- T&



Debugging Optimized Code
Without Surprises

(Extended Abstract)

Max Copperman

Charles E. McDowell

Board of Studies in Computer and Information Sciences
University of California at Santa Cruz

Sanla Cruz, CA 95064

ABSTRACT

Optimizing compilers produce code that impeden sourc~-level debugging, A murce-level debug-
ger of optimized programsshould be able to warn the uuer whmr optimization haa cauwd t.hc value

of ● variable at ● breakpoint w be misleading. We describe the information an optimizing compiler
mu-t make ●vailable 10 ● debugger, ●nd how the debugger can uae the informal ion, to determine
when optimization h~ c~u~d the vbluc of a varimhlc to differ from th~ value that would be predicted

by ● clce reading of the ~urce code,

keywords: debugging, compilers, optimization



1 introduction

A major cmt in the construction of production-quality wftware is debugging. in the paat decade, inbrrac-
tive Nrce-level debuggers have becomecommonly availsble, and such toolII incre- the em of debugging,
providing a tremendous increaae in the speed of locating bugs, Mcmtof the production quality interactive
sour-kvel debuggers function M expeckd only on unoptimized ade. When mucha debugger in used to
debug optimized code, it may mislead the u-r, cauaing the time spent debugging to be increaaed. Since
optimization u d~irable (mmetim~ n~ary) for production software, interactive mmr~level debuggers
that can be used on optimized code without misleading the user are needed.

A common misconception u that s program’s behavior will not chmnge due to optimization unl~ the
optimiw u incor~t. This u the caaeif the program contains no errom and no dependencies on evaluation
order. However, optimization can uncover program errors that are benign in the unoptimized caee. Exarnplee
are given in Section 1.1, It ia not aurpriaing, therefore, that aometima when a program u recompiled without
optimization in order to uw a murc+level debugger, the bug goes away.

P svious work in this area hM tended to target specificoptimization, largely local optimization (within

● basic block). This paper d~ril, J UI approach that appliea equally to local and global optimization,

and the debugger algorithm are independent of ll)e optimization that have been performed. The compiler
modifications k provide the input b the debugger algorithms arc not identical for all optimization.

1.1 Why Debug Optimized Code?

Why debug optimized code? Why not simply turn off optimizatiorm when debugging? It would then be
unnecaaary to oolve problemt related to source-level debugging of optimized code.

Disabling Optimisation May De Undceirable

In ● production mftware engin=ring environment, it may be ●xpensive to diuable optimization. It may
require two compilations of each compilation unit and storage of two copiez of ●ach compiled object. Fur-
thermore, it may be irnpoaeible to nvoid optimization. The compiler of choice may not allow optimization

to be disabled. There is at Ieaatone highly optimizing cGmpiier [Pic90] that, when compiling with opti-
mizatiorm turned oR, still performs live/dead analysis, conslant propagation, copy propagation, and global

regieter allocation, any of which can confuse a aourc~level debugger. In principle it may be poaaible to get a
diflerent compiler, but m a practical matter, it may he impoaaible or undesirable. in addition, optimization

of functions b which Lhe uam d- not have aourcc cod~ (such as library functions) can cauaedebuggers to
give misleading information. For ●xample, if a library function’s stack frame haz ben optimized away, the
debugger may show an inaccurate stark trac~,

Cbangna iu Program Khlmvior

The mat compelling reaaon for thin r-arch imthat a program compilrd with optimization enabled may

behave dilhently from the name program compiled with optimizaticm diaal)ld Optimiz~tion can changp
the program bdlavior for orw of Lhr following rcawm,

● & nrnlantics: A Iangung? IWnycontnil~mmlru~ln wlmxr wmnntim allow multiplp corrwt trannlm

ticmn with dinllnrt hrhaviorn. Mrmt rOtIIIIIOII gmwrd purpuar progrmllllling Iw)gungm do contaih such
mmntrurts, The moxt mJIIIImJIIly kl)owii arrm O( “lourw Mlllnnticnm in rvalunlion ordm, hut lhrrr nrr

ot.lmrrn.A rorrrrl optinlizmi traml~l ion of R Ilrogrmll mnt.~ining rtdr with Imnw wrllrultics nlmy hmvr
difhnt bdl~Vior from a C(JrrtYl umq,tinlizml tmnmhdmn of Ihnt pr(]grtilll,



M i;

thr ●, b[lO], C;

soid umrwritc.co {
● ■ gwcmro;
C=a;
for (i=O; i<=lO; i++) {

b[i] = ‘\O’;

}

C=m;

if (c ■= ‘\O’) {

program mlskAaves

Figure 1.1: +timization changes Progrm Behavilw: Example2

● Buggy progruns: A correct optimized translation of ● program containing s bug may have dil%rent
behsvior frmn ● correct.unoptimized translation of that program. This is M importsnt snd commonly
overlooked c=, two ●xuwplu of ws,ich●re given below. We are concernedmainly with programs that

have bugs — otherwixethey would not undergo debugging. This can cauw fruatration: the programmer

recornpil- without optimizmion in order LOuxea aourcelevel debugger, uid the bug “g= ●way- (th~
behavior that u ●violenceof the bug chuiga).

● Buggy compilm: An optimized translation of ● program msy have difierent behavior from m unop
timized translation of that program if the translator contains ●rrorti If ● buggy compiler csum ●

particukr (pwt of n) progrmm to ~t ditTerently optimized from unoplimlzed, getting * corrected com-

piler memm getting a compiler whcxw bugs ar~ not ●xhibitrd by translating that (partof that) progrhm,
Itu often ●aoier for the programmer to find thr code that CSU= the compiler bug 10 show up ●id
replace it wilh semantically quivalmt code on which th~ rmmpilm funcliona correctly. Th~ point in

.tiat the progrunmer still must dthug the (incorrrrtly) optimiacd cod~,1

It IS common for wcn cxpericncrd wlftwme engin-ru to be eurprirwd at thr fact th~t a progmrn ran
behav? w way when optimized and ● cllfTerrntway wtwrrunoptimizml whrn I( has Jtcn compdtd wifh a
co~rf comptkr. lime ●r? two mmpl? exmmplm of progrmrm with bug~ ~nd how optimisation can dTrcI
them

In the cod? in figur~ 1 1, the hug is benign whrll thr program ie unoptimiaml mnd malignam WIWII
urznm~y stores ●re ●llmlnatd l’h~ bug is to wrll? pul th~ ●nd of ●n ●rray, rwrwriting th~ rhmractrr
c In the abuncc of optimization c is mbrwqurn[ly ovrrwrittrn with th~ corrrct valup ●nd th~ nug g{-
unnotird, In 11 prwure of +lIrrIIzatmn, tlw lIIIg dhtn the twhavu~r rrf ttw progrun t}w optmllzrr

ellmlnalex the u I amgnnwnt into c, becmJswII CAII ddmiiilne that in mcorrmrl progrnm c wouhl nlrrnd~

contain the t-b~ Ignml valu~



ht i;
chu b[lO] , C;

soid walk-on-co {

c ■ gotchuo ;
:or (i=O; i<=lO; i++) {

b[i] = ‘\ O’;

}
if (c == ‘\O’) {

prvqmm mmbchaves

}
}

Figure 1.2: Optimizmion Changes Program Behavior: Exsmple 1

In the code in figure 1,2, the bug ●hews up when Lhc progrun it not optimized. 11hxa no visible ●fleet
when dat~ fetch- are optimized by aligning data structura on 4 byte boundaries.a

if ●ach dats objecL u sligned to ● four byte bounduy, there will be two bytes of pxdding between the
●nd of army b utd character c, and tht bug (writing one byte put the end of b) haa no effecton program
behavior. If dsla objec~ are not sligned, there will be no padding betweenb and c; c will be overwritten.

We have seen that optimization can changr th~ behavior of a program. It is Lhereforenecemmry,upon
occaaion, to ●ither debug optimiz~d code or never optimize the code. It is not always p~ible to debug

unoptimixed code and tmvc il run correctly whrm recompiled with optimization ●nabled, ●wn whm the
compiler u correct.

1.2 The Data Value Problem

A xourcelcvd debuggm b~ thr cmpahility of wtting ● hrcahpoint in a progrsm nt the ●xwutnld~ code
Iocatlon corrmrpondlng to ● aourc~stntmncnl W’hen a brtmkpoint at xcrnwpoint P is rmchcd, prmumahly
thr uxrr wi-hm LO●xsmirw Lhc statr of thr prcrgrmn.oflcn hy qr.wryingthr vdur of ● variahlr k’, Commonly
●vailddc debugg~r-, upon rccciving such a qumy, will dmplmylh~ valu~ in 1’‘n loc~tion Unfortunatdyt thin
valrm may b~ misleading dur LO optimizntim Thr uwr will Iw rninlml if tlw valur in diihmt from IIIC

valu~ that would b prrdictml by Iwking ●t thr rrourre codr (~nd knowing thr relrw~nt cont?xt, Bud) m
within which itm~tion of ● loop exccutlon in nunpmldml). [n uuoptimlx~d codr, at each point thr vnlue in
1“0 location mmtchm the valu~ thal would Iw prrdirtrd Ily thr auurcr codr, m thr rrpcrttd valu~ of 1’ ml 1’
can b? definrd xa thr valur that 1’ would havr at thp rorrrxpcmding point In mr unoptlmit~d vmaion of thr
program. TO provide rrpwftd tthmr, a dr+uggpr munt provlrlr thr rxpmtml tialur of 1’ at l’. Smnrtimm
it may not hr praclwal to provil!r th~ fx~mctrd vnlu~ of n vnrinhlr. III thin C* the rirhuggrr rm rxhihll
trw#A/ulbrhavior if It provldrw lh~ rurrrwl valur In \’ ‘mhKBIIIm, hul In addlll[m reportmthal lh~ vml!le (If t’

might h ddhreni fmnl 1“s rxprctrd valur, mntl WIIY

● to ~trict the oplllllizatmuu prrh)rtlml I)y thr rIUIIl)IIFr I(I LII(H thnt ilt) II(II pr~wl]kr lhr pr~d]lrlll
(IWS7H], [ZJVO]),

..—. ..-. —.. .-—— .— ....— —. ,-.. - . ..—.-—



● to rwxompile, without optimization, during sn interactive debugging ~ion, the region of code that ia
to be debugged ([FM80], [ZJ90]), and

● to have the compiler provide information about the optimization that it hu performed Md to have

~~hcugger w thst informa&iorr to provide appropria@ behavior ([WS78], [H82], [CM R88J, [C90],

The larger problem we are concerned with u lowering the cat of debugging production quality dtware.
Much if not mat production quality mftwue prod~ced in this country ie heavily optimized, and the firot
approach would rault in compilere that would not get uud; their w would degrade the quality of the
dtware. The ~d approach requira ● eoftwue engineering environment that provid~ incremental
compilation. Such environments are not in general uee and ●ven ehould they become commonplace, the
●pproach u unacceptable becmme optimization may change the beh~vior of the program (cf. section 1.1).
We take the third approad.

If the value in ● vui~bk’a storage location is nuitable to be displayed to the ueer itin crnmnf, The
remunder of this paper outlina how to determine whether a vmi~ble is current at ~ breakpoint. The
fundamental idea behind our solution to the currentnms determination problem is the following: if the
Mmitiotm of a varisble V thst “attually” reach a point P arc not the on~ thal “ought” to reach p, V is

not current ●t P, The definitions of V that actually reach P ue th~ that reach P in the compiled ver~ion
of the progrun. The definitions of V that ought LOreach P ●re themethat reach P in ● strictly unoptimized
version of the program .s The aet of definitions of k“that reach ●t any point in z program (optimized or
unoptimized) can be computed using ●xisting algorithms [AU77], If the act of definitions of V that reach P
differa in the optimized and unoptimized veruion of the program, then L’ in not current. The debuggm can
uw the cu of definitions 10 describe, in source-level terms, why V imnot ,.urrent. Unfortunately, if the two
s u of definitions are ~ual it is -till poeaihl~that 1’ is not current, This in diacurrrredfurther in Srction 3.2.

In order 10 determirw ● vuiablc’s currentmmr:

1.

2.

3.

The compiler must generate ● =t of dchug records rdnting statemcnhi LOcode addreaeea;theirr drbug
records ●rr ordered in two flow graphs, one rcprearllllng tlw progrnm lmforc optimization and the other
mprmenLing the program aftw optimization,

The flow graphs ar? ueed to comput~ reaching definitions, which ue in turn u-d to cr~~t~ m~ching
-la (meteof defrnitiormthat reuh a hr~~kpoi:~tIoca[ion),

The rrmhing arb ●r~ cnrnpar~d to cornputr thr currrntrmrn of variahhw,

%clion 2 dmrih~ lk dala structur~ that munt b~ producml hy LhF ccrmpilrr, Smtion 3 dmcrihm how
these dala ~lruclurm ar? IIMXIto provid? cxprclrd Imhmviornltwtof thr tilllr aIId truthful Imhavior Lhr rra[
of the tirnr 4 .Srction 4 dincu~,m thr ●crurmy of thr rrnultm,



2 Compiler Support

2.1 Debug Records

The compiler proviclu tbe debugger with information shout every declaration and atd.ement in the
program, We cdl tbe dection of information about ● statement (decl~ation) a debug ~rd, A dictinct
debug moral u prwlud for each modification b each program varisble, ao more than one debug record ia
produced for ● Aakment that hw aide effec~. For ●xample, the following code cauaa 6 debug records to
be produced:

tit m, b, C; (Producu thm declaration debug records,)
~mo; (Produca one statement debug record.)
b = c++; (I%oduca two ststement debug recordc: one for the

wignment into b, and one for the aide effecton c.)

A debug record R for ● statement 5 has the following fields:

● Var(R) — ● variabk name,

● smj(R) -- ● rnurce reference,

● Cm/(R) — ● co& reference, and

● Moved(R) — ● Wean (one bit).

The Var field identifla the vuiabl~ updated by S. We may It defines L’ if Var( R) = V, that is, if 1’ in
th~ variable updatai by S. If S does not updatr a variald~, thr Var field is null. The Sref field containn the
aourcc referencef- 5 (file nam~ amd Iirw numhcr, pcrhapriwhich statement on the line, if thr debuggm in to
handl~ Iina with multiple slalcmenln), Thr (Irf fidd cont~innthe addraur of the instruction thal rcprmntn

S, If no inblructiotr is generated for S, thr Cref Md i~ null, unleu the debug record dmcribema declaration,
in which cm the Gef field containo thr •drl~ al which storag~ for thr d~c]ar~d variddr ia allocated. Th~

Moved field enccula whether tlw codr for .S has brm movpd out of th~ hamicMock in which it originat~d.

2.2 Representative Infitructions

—— ..—. — ..- — ..—



2.3 Flow Graphs

The compiler alao provid- the debugger wiLh two representations of the control flow of the program.

A flow graph rspreamting the basic block ttructure before optimization is called the SOMRCgmp~. Each
❑ode in the mrrce graph correapondato a baaicblock and containn● =quence of (poinkra to) debug records’,
one for each statement within the block in tbe order in which the statements appear in the murce code.

A flow graph rep-nting the baaic block structure after optimization is called the object gmph, Each

node in the object grsph correapondmto s basic block and COIIkN ● sequenceof (poinlers to) debug reco:ds
thatcorr-ponds to tbe mequenceof statement that have ended up in that block.

2.4 Reaching Definitions

The flow graphs are used to compute reaching definitions. We are interested in determining, for each
statement that defina a variable V and reucll~ a breakpoint B in the unoptimized code, whether it~
corresponding objecL code reach= B, Both ~taternentand breakpoint locations are representedwith debug
records,ao the desired determination can be made by computing which debug recordsrepremmling definitions
of L’ reuh the debug record representing the breakpoint B.

These reaching definition ~re computed scrms, M well M within, baaic blocks, ao thm records Lhat
must reuh B (sucii M definitions occurring prior to B in the came block) can be distinguished from records
that mmy reach B (definitionrnoccurring on aonw hut not all paths to B). For a hrcakpoint B, the W[ of
aourcc definition that may reach B is computed bed on the Sref Ildd of the debug recordo in the aourcc
graph. and is call~d the U( OJdrfinrhons of 1’ thal roach B. Th~ ert of ohj~ct codr definitions that mny

reach B in compuled bawd on the (%4 firld of the dc+ug records in tht obj?c[ graph, and in called the srt
of storrs into V that reach B.

WF uuunm a null drfiuition and a null ~tor~ at tlw heginlling of thr program or ouhroutine, that in, ai
Llw start nodr O( a ronnccL~d conlpol ent of a flow graph. ‘1’]llnen~urm that if a tinglr ddinition or storr fur

a variahlc rcachu a breakpoint, it r~arhtwRlong all prNhn to ttw hrmkpoinl ‘l-his RIM)rnaur- that al 1PM
onr delinit ion or uLorr fur r~ch varialjlr rrarlm thr I]rrmklmint

hl dir ahWllW fJf poilltrrn nnd arrhy rrfrrrllrrn, rrrwhing df’frllilionn could ht’ tolrlplllf’d urrillga nlnldd

itmt ivr algorithm [A I:77]. Thin WOUI(Iproduce aI Ilwaf om Minition O( a givrn v~rldllr at LhF rxit (If n
Idork, [lning murh an algoritlllll, nn ~ignllwnl thrfnlgl] n puil)[rr or ~rrmy rtfrrl’nrr would kill Rll ~Imd IIIg

drfmlt .(llln. Thin would dral roy inforn’7,11[111rrqulrrd hy lhr rurrrnl mum drlvrmimtion ~lgorithrl~.

Irl Lhln pnprr, rc%rhing drlillil imn nrr urwd to dvlmlllim if n vnrinhh’ 1’ IIM dr~inlfrl~ rrrrivrd itn VRIIIP

from orrr pdrflrular drfillil ion m may h~vr rrmwvl ~lrI vmlur frtllrl onr 0/ ~rr)rral drfirlit.ionm. In lhr prwrlrr
of polnlmm and army rrfrrrllcm, if a dr{inllion 1) Lllr(mgh n poir)t~r or arrmy rrfmrnrr (rail it ● /’) r?mrlws

Ii, ●1’ nlny Im nrl ●linn for l’, thun 1) rllny Iw n rrnrhlng drfinil ion of 1’.

If ●IJ in M nliaa ftjr l’, 1’ rrmivm ila Vnlur fr[~tllllw rolrllmlntion uuuwinlrd with 1). If ●/’ imn[ll all
AIM f[)r 1“ in WIIII- pnrllculhr rxrruti(m, 1’ rvrrivrm Itn valur fr(ml whm(rvrr delirlil itln /Y w(IIllIlhmw-rrmrhtwl

if /) wrrr not prwnl ‘1’hrrrflw, II(II h /) RIIII /)’ lIIuml hr r(mnldrrrd 10 rcvwh 1~ ‘l”hIn in lrfnlml rrltmv
ftmllnlly ~n [( ‘IJ()] p~I 110 I 12 Ill lhF Itrrurrlrr of IlltllllrrmmIIl nrrmyrrfrrmlr-, rrnrhlrlg drlinill(mm rllunl Iw
mmlllulrd unlllg n rll~dllird mlg{mllhlllIll wllirh nn ~igllrlwnl f,hnmgh n l~lulllrr lw nrrny rrfrrrllrr d(mn 11111

kill ~~rovl~m flPllIIIIIfJIIn, I hum Ill{wr thrill 111)1,IIvfilllll,m t)f n glwli vkrlnl,l~ Inn} rrnrh ml} ll~nrll, ltlrlllIlll Ig

Llw rkll {If a I)l[wk
. ..—....-- . . . .. -,.



2.5 Equivalent Definitions

An optimizing compi!er may be able to determine that two definitions ue ●quivalent and generate moingle
stire, or iL may generate multiple storm from a oingle definition. To accommodate this ability, we redefine the
terms definition and store.

Definition 1: A definition of V is any member o/ an equiualcnccclassof modificaiinnn of V that occur in an
unoptimized vemiom oj a prvgmm and can bc deiennined by a compiler to mpmuni the same computation,

Definition 2: A store inh V i, ●nmmeniber o! an equivalenceclaaaof modifications oj V that occur in an
optimized oemion of c progmm and that have been gencmted /mm one definition,

We extend debug record- with * t%ld Equiv(R) for the compiler to record th~ equivalence clam that the
b

definitions and ctora fall into.a The re~hing-definit. ions computation then c.omputeuthe wt of equivalence
claua (definitions) that reuhu ● breakpoint in the source graph and the -t of equivalence cluses (atorcs)
that re~ha a bre~kpoint in the object graph.

_—— .- _.. .. . . . . . .



3 Currentness Determination

This =tion d-rik how to determine which ntate of currentn- a variable u in ●t a breakpoint - the
problem of ea-niness dctemindion.

The debugger baa available 10 it the flow grapho and debug recordo described in section 2, When a
breakpoint E in ● program u reached, and the uwr aaks for the value of a variable V, two aetJ of reaching
definitions are n-ded:

● the aelOf stow ink V that math ~ in the object graph, that U, the modifications to V thst actually
reach the point at which execution is m.mpended,and

● the mt of definition- of V that reach the point in the murce graph ~pecified by the u~r (in source

~rms) th~t correapondmto B in the object graph, that is, the definition of V that the user expects to
have reached tbe point at which the um believesexecution is suspended.

A number of variations on how to compute th= acts of definitions, trading otorage spac~ and one-time
computation crn~ for speed at the point of the (interactive) query are poaaible, the moat straightforward
being that they are conlpuLed by the debugger at thr point of the query about k’,

To determine a variable’s currentneaa we comparr thvmc aeto. There can be one or many definitions of
● variable that reach a breakpoint mnd there can he onr or many stores into that variabl~ that reach that
br~akpoinl, inducing the matrix of four caaenuhnwn in Table 3,1. In the m-t complex cam, in which many
definitions of and many storm into a v~riable reach a hrcakpoiut, comparison of Lht reaching acts alone
i- not m~r.ient to dctcrminc a varidjlc’n currrntnran, TIIe additional work lhnt in required to make lhc
drterminntion is dacribml in wctionu 3,2 aud 3.3. Tal)lc 3,1 aumnmrizen thin additional work.

Thr tabl~ yields OIWof five poaaihlr rcrvprmsm:

Current Th? value of tlw variable will he ttw rxpectml value.

EI~dangwwl Tl)~ valur of the variahk will lw Llm●xlwctwl due for acme execution pathrrand will not hr
Llmexprrtpd valur for mom?●xeculion lmLliri,

Noncurrmt The value of the v~riahlr will no! be the cx~mclrd valu~ (or al least not dmiv~d fmm thr
•xpmt~d computation).

Not Currmit TIIF varimhlein ~ithrr mldmlgrrrd or n~lllrurrwlt, Not. rurrvwl in nilllilnr to ●ldnngrrml hut
indicala that thrrr Niny in fact iw II(I mrcul,i(m pathm whrrr lk varinhk grtnitsva]ur frolll lIIP
Fxlmtml Conlpulhlion. ”

Kxrqh for thr Mnny -Many CXM*,thin yirldn n rritl~lllrrdglwithm for {Ivlorlllitlilig tlw rurrrllt mw (}f a
varimhlr.



One store, s, reacha

One definition, d, reach=

WM # generated from d?

Y=: current
No: noncurrent
~M one of the stora generated from d?

Ya: ●ndangered
No: noncurrent

Many definitionrr reach

WM s generated from one
of the definitions that reach?

Yea: endangered
No: noncurrent
Were any of the otora generakd
from any of the definitions?

No: noncurrent
Yea: Were the dora exdy those

generated from the definitions, and
did every definition generate a store?

So: not current

Yea: W’M there any relevant code motion?

No: current
S-: graph traversal required

“1’ should have ban WI at Iirw 33fl, Ilowcver, optimization has moved ttw -ignmwrt to 1’ at
!;nc 342 to near Iirw 327, k’ WM actually art a’ orw of Iinex 336 or 327.”

“k’ should have been -t mtline 336. Ilowever, optimization haa moved that aaaignment to rwar
line 348. V waa actually ad at orw of Iinex 312, 027, or 323,”

I’IIP description of tho rfhctn of optinlizat ion will vrwy in npmifrcity aa thr dlwtn of optimization v~ry
in complexity. 7“he dtmriptimm in thr hlmly- hlwly CM will hr Irxx npecific t.hnn thr dmcrillt.iom in thr
(-)W-ollr cm’. ‘n



Unoptimized

Unoptimimd

I I

Optimised: a in current

+ *

I H n%= I
I

1
I

Y I [
a =Z 1

I d

Optimized: a io endangered

ax=

a =Y

t,

bkpt

optimized: ● is noncurrent



B. J/ mch motion is ~ound, V may k coaserwafiudy clalmed to k not carmrd at B. Informally, relevant
code motion ia any motion acrtm block boundaria of atorea generakd from definitions that reach B or
movement of B 8c- s block boundary (this includ,- code elimination rM a special c=). It ie not known
how good thin approximation h, However, becauw no code motion occurs in the abmmce of optimization, this
approximation works perfectly on unoptimiaed r.nde. Furthermore, to get ta the inaccurak (con~rvative)

c- there must be

● optimization involving relevant code motion,

● more than one definitionof V rewbing the breakpoint,

● more than one atom into V reaching the breakpoint,

● and the stora that reach must be preciwdy the stora genermtedfrom the definitions that reach.

3.3 When All Else Fails

kt uo examine the caaein which comparing re~ching aetndoa not give UEan annwerand relevant code
motion haa occurrd. We are now asauming the conditions er,umeraled above,

In general, V u current at B if every path to B that goa through a definition of V almo goa through

the store into V generated from that definition, and neither the definition nor -tore are subquendy killed.
Thb would be expensive to determine in general. It is mmewhat cheaper in thin special c- (although ntill

conciderably more expensive than comparing reaching aets) becaume we know that the definitions and stoma
thal reach B match exactly, and olorea that have not Iroved can not ●ndanger V,

Givm the amumptiona necessaryto reach “grnph Lraverkal rquired” in Table 3,1, V is current at B if
for all” clrfinition/stae painr d,a muchthat s WM gmeratd from d the following hold:

1. Ifs haa been moved DOWN out of the block co,ltaining d then

(a) for ●ll path- from d tQ B along which d reachm B, s reacha B and

(b) there is no path to s that did not go through d,

2, If t hax bmn moved (Ii) out of tlw block containing d tlwn

(a) for all pathn from s to B ●long which a reaclwn11,d rmctwa M rind

(h) thwe ICno ptlh to d that did Il(Jt go thrnugh n

~otke that rarer2 abovr in idrntical to rmw 1 wilh thr rolm of d mnd n rrvrrmod,

Figure 3.2 ●tkmptn to caplure the ratrirlirmm picluridly on an examl)k in which tiw slorr haH nl~wrd
down Not captured in the figur~ in dial if mm of d or s in killml along aIIj path, IAII munt hr,

Whrther th~ matricticmn hold cm he rrmlputed hy a pnir (If rrcurnivr grni,h lrhvrrn~l nlgorilhlllh
holntmrd by an additional reaching ddlnilicmn rim~putntkm. Algorithm Through-top (givrn ill Figur~ 3.3)
ran IX uaml to tat whelhrr all pmthn to om hlork p= thruugh ●nothm (condition Ih and Uh ●lmvr),
Algorithm lllr{}uKlt-llli[lcllr (givrn in Figurr ;1.4) cMt hr umrl to t-l whrthrr mll p~thn from onr Mock t~,
●nether p= Lhrough ● partirulmr middlr lhjrk (mmditionmla nnd 2A nlJ~wr). lh~th rdgnrilIlilm rrly ~mIwing
●hlr tmdrlmn~iur if onr Mock it an mwrlor of nm~lIwr, xrl lhr t rnnnitivily U: Lhr flow graphm,ignoring hnrk
H@, Illllnl 11?C1.rnlpulml.



mbkpt

Figure 3.2: Pathn if V is Current

~ough-top(Top, Bottod
for ●ach pr~doccssor S

if S 1~ Top

if Top ia not an

raturn Falao
●ISO if Tb.rou6h-top(Top, S) ■ False

raturn Falsa
return Txua

Of Botto=

macaator of S

Figur? 3.3: (;rrqdl~”rwwud Algorillltll lllrollgll-tol)

TWou@-middlm(Top, Hiddla, Bottom, DofOrStoro)

for ●ach auccosao; S of Top
if S 1= Niddlo

it S ia an aaramtor of Bottom
if S i- not M ancestor of Hiddl.

if not Top-killod(70p, Bottom, DcfOrStor@)

rotu.rn Faloo
●1OO if Through-middlo(S, Hiddla, Bottom, DofOrStoro) ● Faloc

return Falsa
return Trw

tluurr 3,11.(;rnph’1’rnvrrmnl Algt)ril llltl’I’llro~tgl)-hfl[l(lll~



d

W4 + A

s d’, d
● ,

v v

bkpt
,

Figure 3.5: V is Current

If the store’ i in Top reacha the breakpoint on any of thw paths, V is endangered. If the etorei1 in Top
is killed on Al ouch paths, V is not endangered by the motion of this particular store’1. Figure 3.5 is an
example of ●ch ● situatiou in which V is current. If Through-middle d- find such s block A, Topkilledo
io called, Topkilled(Top,Bottom, DefOrStorc) returns True if DefOrStore is killed on all paths from Top to
Bottom and Fdw otherwime, DefOrStore is a definition of V or a store into V in block Top, Top-killed can
be computed using a atand~rd reaching definition algorithm on the graph containing Top, Bottom, and all
blockoon paths between the two.

4 Summary

We have pranted ● solution to th~ problem of optimization causing a debuggrr to provide an un~xpwtcd
and potentially mishding value when naked to dinplay a vuialde. The molution worku for both local and

glolml optlmizations, The algorit.hmofor th~ debuggrr arc indrpmdent of which optimizntiorm have hecn

l;~rform~d, however, th~ dgorithrnn used !)Y th~ compil~r to gmwrate the nrrmwry flow grnphe arc not,

For mmt optimizalions, under mout situations, our rmultn ar~ precinr (ilr,, a variable claimed to hr
Current is current, ● varimbk claimed tc lw endangrrd is ●ndnngmd, ●Ic, ), Wlwn the reaultn arr ml.
prrci~, lh~y ●? murvstiv~: ● vmidlr claimed to br rndangercd, nonrurrentl or not current m~y ill fret,
he currrnt. A varidde th~t in not current ia never claimed 10 h~ currrnt,

Thr mituationnin which the rmultn mny h? conmrvmtivearr:

● wlmr a variabl~ in rurrrnt nhmg nll fr~itdr lMl hn hut Iltm(’urrrvlt d(mg molilr infrmnil)lr pnlll. 11
—.. -. ——_. —..__ —.



Optimization II Algorithm Accuracy ]

common oubexm~ion elimination II Generally Preciw#z I
I

c-jumpmg Generall~ Precim

instruction uheduling Generally Precise
other code moLicm Generally Precise
partial redundancy ●lamination Generally Precine

loop reordering Cenerdly Precise

induction-variable elimination Cenerdly Precise

loop fucion Generally Precise

loop unrolling COnmrvative
inlining (procedure integration) Ccmoervative

Table 4.1: Charackrimtiu of R.epmentative Optimization

For aorne optimization, our ruultJ may be conservative in my situation. Th- optimization are
those that duplicate code where the duplicate are not in the frame equivalence clam (one duplicate does not

repr-nt the same amputation aa another, aa in loop unrolling). Table 4.1 lists representative optimization
and ehowehow preciceour reaulta are on them.

The method to precimdy determine a variable’n currentn- in the moat difficult c-, described in section
3.3, may be expensive. Section 3.2 d-ribez an inexpensiveconmrvative approxim~tion to the preciwsresult
in this cum.



References

[AU77] AkIo,A.V. md Unman, J.D. ‘Principl= of Compiler t)esiqn~ Addison Wedey, Menlo Park, CA,
1977.

[CMR88] D. Coutant, S. Meloy, M. Ruacetta “DOC: a Practical Approachto Souroe-Level Debugging of

[am]
[EK771

[H82]

[Fhf80]

[ZJeo]

[WS78]

[Z84]

[Pic90]

~lobally Optimized Code,” Pmceedinssof the S/GPLA N ‘,98con~erence on J%gmmming Langn-age

Design ●nd Implementation, pp. 12$134, 1988.

Copperman, M. “Source-Level Debugging of Optimized Code: Detecting Unexpeckd Data Valu-,”
Unitwmiiu of Coli/omia, Sante Cmz technical mpod UCSC-CRL-90-2S, May 1990.

Eve, J. and Kurki-Suono, R. “OrI computing the transitive elaure of ● relation,” Actt Jn/omnatica
Vol. 8, pp. 30y314, 1977.

Hennmy, J. “Symbolic Debugging of Optimized Code,” ACM %nmctiona on Pmgrmmming Lan-
guagea ●nd S@ems, Vol. 4, No. 3, pp. 32$344, 1982,

P. H. Feiler, R. Medina-Mora, “An Incremental Programming Environment,” Carnegie A4e//on
Univer#itp Compuier Science Depotimeni Repori, April 1980.

L. W. Zurswaki, R, E. Johnmn, “Debugging Optimized Code With Expected Behavior,” Unpublished
draft from University of Illinois at Urbana-Champaign Department of Computer Science, Augunt
1990.

H. S. Warren, Jr., H. P. Schl~ppi, “Dcaign of the FDS interactive debugging system ,“ IBM Reseamh
Report RC7214, (IBM Yorktown Heights), July 1976,

P. Zellweger, “Interactive Source-Level D-buggins of Optimized Prograrm,” Reseamh Repori CSL-
84-3, Xerox Palo Alto FbssearchCenter, Palo Alto, CA, May 1984,

D. Pickens, MetaWare Incorporated, Santa Cruz, CA, personal communication regarding the
MeLaWare High C compiler, JBI’IUBrY 1990,



The Symbolic Debugging of Code Transformed for Parallel Execution

Patricia Rather Pineo May bU Soffa
Allegkny College University of Pinsburgh
Meadvilk, Pa. 16335 Pittsburgh,Pa. 15260

Abstract

A technique is presented that enables the debugging of transformed and pamllelized
code km the point of view of tlM sequential code. The method frees the programmer
from the necessity of viewing the substantial] alteredcode prcduced by lhe pamllelizing
Lransformationsl.

A critkal problem that arises in the debugging of such code is that values requested by
the progmnmr at a breakpoint placed in the transformed code may be different when
reported than tk values expected by the programmer. In other cases, the requested
variable may have changed in type or dimension. Such variables and their values are
termed non-current. These discrepancies between the user’s view and the runtirne
mpmsentation are due to the action of the transfomrmtions on the code, where declaration
statements can & modified and executable smrements can be added, delrwd, moved or
replicated. k aecu.rate tracking of non-current variables for the purpose oi reporting
R- v~ues to the debugger is the subject of this work. A subset of [his problem has
&en studied previously in the context of code transformed for optimization.

The technique for debugging transfomwd code is realized in a lhrce stage system,
where the code is first tmnsforrmd by global renaming into single assignmcn[ cod~. The
code can then be transfom~d and parallelized by any desired sof[ware package, A
drawback of the global renaming is that many new names arc created, most of which may
not produce a useful knefit, Therefore a second stage anal) sis is applied m the progrtim,
aher parallelization has occurred bu[ before c >mpilmion. where new nmcs which htivc
not produced any benefit are reclaimed. The names not reclainwd have ci[hcr kn uwful
in exposing additional parallelism, or arc required IIT the tracking function for [hc
debugger. The third stage is a mntinw intcrfwx tha[ rwricvus and rcpons ~hcVUIUCS,

This design resuh.s in a solution that is Iargcly archiwcturally indcptmlcnt. is
independent of transfomnations applied. comctly reports values in a high pcrccnmgc of
caus, and enhances the parallelizing pruuss. The cmnbinciJ cf(ccts of the gl(h~l
renaming and name rechhtion stages arc [o free the code 01 undmirablu doIa
dcpcndcncies exposing all available pa.mllclism. For [his rrm~m Ihc [cchniqur is tcrmud
Code Liberation.



Intermediate Languages for D~buggcrs*

Benjamin B. ~hti

Department of Computer Science
P.o. Box 1892
Rice University
Houston. TCWM

77~5]. 1gg~

Abdract

Exirtizzgaourc-ltvel drbuggrm we heavily deprndenl m. .)oth thr aourre Ianguagr of I hr program

bmng debugged ●nd the ●chitert uze of “he m~hine on whi.-h the program runs. I.hrw tlrpmdmzrio~

IIIXF a burden on a prqrammcr who wmttt to ●xtmzd thr dcbuggm to work on t difkrrzrt languag~ or

m~chinr. Such debu~rr~ alao typically oflcr poor supporl [or aophimtirated feat uim mzch az d~t”rzgging
codr that h~ ken radicolly trann(ormcd durirzn compilation.

\VC prop(me a ncw d~rign [or d~hu~er~ that uzm a EI rutvllrc mndqmm to thmt of modular compilrr,.

TIzrddnr~rr i- aeparntcd into stag- corresponding 10 \hc parner,optimizer, and cudr gvnrrator of ●

compiler. The variou~ nlxg~ of the debugger commuuicam unina an inter mediat~ Ianguagf which ran Iw

derived by aummenling I hc intmmdiste Ianguagr of the compiler with pnmilivm to suppori d~hu~ing.
\VC rx~t Ikis demign will promoi,~ the ●bilily to debug optimized rodr, ●- in porting thr rlAzggm

tn rlifierent arcbit~lures, xnd rmmability of earh por~ion of ● drhu~er. Thirndrsign k izrwnrird to inrrrur
lIIF rcmptwatIon brtween in plmnvnirr~ of rompilrrm A dcbu~~rn, and III allow Acirn”. lmpl~lnrlllnl it)lls

or wnphl~twaim! drhuggizzR opcrnliurm, whilr mpportirzg the drhuggirzz of optimizml proxramh

1 Introduction

I



an optimizing compiler reduces the pert ability of the debugger. Final!y, the traditional IIIOdIIlilors II(,I

accommodate program changes during debugging, These limitations are discussed In more detail lw1(Nv.

In an attempt to improve portability, traditional debugger designs abrlracl the nlachine deprndent pilr[~

of (I)e debugging process and kcrlnte them in a colklion of modules, To build a del)uggcr for a new

machine, or-w only neds to m-implement thr machirwdependent modules. Thr sanw tochuique can Iw used

to provide some measure of portability acroas source languages. \Vhmr this appromh to port ahili[y is usrd,

tlw debuggm implementer is msentially inventing an ad hoc intermediate level betwwn tlw sourc,’ liiil~liit~t,

and the Inachine. \Ve will see later that besides portability, other Lencfits can be rctl]izrd if w forl)lnliz.. 11110

internwdintr= level.

Attempting to proiide portability across a family of compilers. the implenwm[crs of (“SIX 1 drsil~l]vd il

stnndard synltrol table format tha[cou]d be shared by thr compilers and debuggers orl [he systolll. (“llfor-

tuna[ely, al(houg]l their design was fe wible, there are arnhiguities in (he “s[al)rlard” that rwult ill SUI)[I,,

hu[ significant differences in thr symbo] tables genera[rd hy diflercnl compilers, Also. wllill, itl Ilwory [11,s

a~)proacll ●l)surm portability across compilers, ●tarldardization Ir!t roducm other problem~,M deIailrvl I)rluw.

[’llfort unat+, the Lrerwfi(ri oi standardized symbol tabk begirr 10 lmak down when the prohlrll] of

cq)linlizirlg compilers ia conriidercd. Th~ rrntationo for a fnmily of compilers shnring a hmk rn(l IIIIISI IN,

sufficiently rxprtwlvr IO acrommodn:r tlw corwtructs ~i all of the different sourrr ]nrlgu~gps rtvwgniwd, As

tllr ronlpiler Inmr rndic~lly rhangcs n progrnrll, Ihr dr-l)uggcr must ht=comr mnrr tnilmrd tl) tll~t ~onll)ill.r

nn(l its largrt Inngurrgr, so thnl t tic colllpilrr’s ccdr [rallsfmnlat i(ms rnny hr drcodrd hy t tw rirhu~grr.

1“1)0 collltllllllirnlic-Jn Iwlwren tlw cornpilrr nnd dchllggrr Ihnl riwwrihm (Iw t rnl]sfornlat inns. it) I III f(wlll of

Syll)l)ol I:l})lr llo[~l[iol]s,” nlllst Iwcon](, lll~rr ~~nlp]icalc(l, ‘Il)rsr Pyml)o] Ilntntlolls II)IIsI I)r nl)lf. to rrl,rt.st.r;t

tlw r(mlpmltioll of nll of Illr vnrlous mirplul,gs Indurrvi hy cm-h pmrl of tlw r,mlpilMtion I)rt,r,,ss ‘1’111s

Cr)llll)rwltl(m car) chringr M difftwnl tran~forlllntlor]m arr requcstrd or inhlhltml I)y t]lr Ilrogrnll)l]wr, all(l m

I)ilrlk of t 11Pcotllllilrr nr(, mmlilir(l,

II ,,1! ,, n ,F~,.lrl F,l Ilmrldl,lnlb ,If .\ 1A I }Irl, I,nl,,,lali,l le.



2 Proposed Solution

\Ve propose that debuggers bc built similar to compilers, adopting and extending dw almtrarl nmchine mmlel

provided by a compiler’s intermediate language. If compiler implementers are r~sponsibltl for supporting n

number of languages on several different architectures, then they are strongly nmtivat~d to UWI a COIIIIIIOII

intermediate Iunguage, and separate each compiler into a front end and a back end. A aml]jilrr frul]l

end, consisting primarily of a scanner and parser, recognizm a given source languagr nnd grnerntcs I lit’

internwliale language translation. Each back end of a compiler recognizes this intornwwliaie Innguagc nnd

grnerates instructions for a particular machine. This aepmation reductm the amount of work involved in

building compilers, because instead O( writing a separate compiler for ●ach langu~ge-rrmchine pair, OIIIY OIW

front end is needed for each Iangunge and only one back ●nd for each architecture,

Dy renterin: the cicbugging procm on the intermediate language, it is also possible to sl~lit the dehuggillg

~ystcnl into a small nullllmr of component.s, Tlw dcbuggm would consist of n front end 111111h cnp:ll~lr of

nlnppiug ~hr trnll.l:ttioll fronl source to intermmliate lnnguage and a back rnd tliilt is CHI):IIIICI of mnpping

t Iw I ranslat ion from intermt=dinte to machine Innguage, In rmponse to user act ionN, t Iw fronl end generalf=s

interllmdintc code tlln( performs tlmu actions. lhe back ●nd exccutcn this int mnwdi~t r rmh’ ill I ho currtvll

Cnnlt.xl llf tllr prog:~lll I)rillg delluggod. ~!rmtill~ n dcl)uggor fl>r n pnrticulnr Illllgllngr-lll:irllillt’ ]mir HhOll](l

Iw rasily nchirved l~y couljling tlw apl~mprintr front end all(l t~ack end

‘I]le ninlilririly lwlwrTII rrtistitlg wl,lpil~tion riysten;s nnd tlw prcqmrml d~~hugging #yslmll i~ illtrlltioll:il

( “onlpilrrh and dcl]uggfrri Iwr(l to coopmnlr extcnriivrly to rmppt)fl rmlrcfm-1rv,’1 dc”llllgging I)llring Ilw

trnl)slntion prnrms, n romllilor mIiRt prmlllm thr Rylld)ol taljlo nrwmury 10 rolntr tlw M(]llrcv llrogrnlll lo ilh

nmrllinc l:ingllqtr rquivnlmll, III our npprcmh, I Iw infmmnt ion rrquirt=d hy I lw frrull rnd of t hr dfdmgw.r,

nmpl~illg lwlwww I lw mmrr~ nnd inlmflwdintr rrprvstmtutionn of t hr progrnm. woul(l Iw Imwi(lcd l~y t 1111

fr(mt rnd of 111PCmllpill’r. Si~llilnrly, Ihr mrrpping rrquirrxl hy the drl~uggrjr Imck rn(l WOUI(l III’ grlwr,ltml I)y

I lw c~~itll~llrr l)~wk ctltl. Iigllrv I drl,irt~ IIIC rrlnt ir.w~hill~ Iwtwwtl I INScollll~ilm nlld ~l#’lJllgE1’rill ~jllr II U,,IIII

‘I”l,c, 1111,.rf;,rv I,otw,wll n (“SIN ,lrl,u~grr nl)d olj,,rnllllM Nyntvlll Cnll lw vi,’wml m n vvrsl(,ll (Ilfjllr l~rtll,(,w,l

I Ilil Ill I I’r,,l,,w,l 1,,,,,1,1 ,,[ I 111,111111r ,l,l,,l)l,~,,,,r t,,,,l,,r:lll,,l,



The “back end” of the debugger is roughly the portion of the operating system that supports tlwso cnlls,

and the front cnd of the dclmgger we have designed is the (JNIX debugger proper. ‘1’Iw in fornlnt ion nrrdd

by a Bymholic debugger to map between source symbols and ]ocationti iu found in n ripecinl par[ or LIK= [I NIX

file containing a compiled program.

A more sophisticated compiler mi@t have a number of middle phases that pcrforlll Irannformulions 011

the intermediate language reprewmtation of the program before a final code generation Iihnsr tr~nslntes 11111

intermediate? code to machine code. The debugging aystcm for such a compiler would hnvc corrmpolldil)g

interior phases, not pictured in Figure 1, Each of these Irans\ormaflon ~tnges would comprnmtr for tlw codt,-

irnproving transformations performed by the corresponding middle phase of the compilrr. Thr dfcc[~ of ii

particular code transformation performed hy a stage of the compiler would he hnndlrd Iy tht’ rorre~poll’lillg

transformation stage of the dcbugg~r, Each of these dehuggrr stngtw would lw I)oth rmurrv and Ilmchim’

languak: indcpcndcnt, and would only rim-i to lW changrd if lhero WMI n change to thr correspnnrling w ngr

of I Iw cmnpilrr.

3 Benefits



the next. lower IFVFI, The stage that mnps from intermcdinte code to mrwhirw codr has iwrr op[ ions: eilll(’r

trandntr thr change into machirtc code and patch the cxecutrtblc, or arrange for thr chrrngwl cm-h’ 10 IN.

intcrprcttd. lllcotl~cr stages oftll(idr!luggcr are unaffcctod by which choice ismn(fr.

Ttlr pritnitives that arc nddcd to the intermediate language to support dchugging providr a Irvrl of

abstraction. Thrse primitives mny hnvc a variety of implrment~tionn, ditllrillg in cfiicirwcy, erwc of im-

plementation, and inlrusivcncss. This abstraction nllows thr implcmmrtation of primitivck to U*C Rp~~iitl

dclmgging support offrrcd by a particular operating eystcnl and hardware, whilr rrtninillg l]ortnl~ilily.

Sinm drhugging opcrationrr arc built from primitivm in the intermerlialr l~ngu~gr, thr ml of oprrritim]k

supported nt. the user level can be enhancwf without changing thr back mrd of I.lW rkhuggrr. For rxnnlplc”,

givm u prill]itive to wali ii s mmnory location, we nhould be able (o extend the calmbilit irM of tlm dehuggvr,

nllrming it to continuously r.rpdatc a view of the contents of an ahslrncl datn structure, or dyll~lllirilll)

monilor tht= pwforrnnnce of a running program, all by changing only the front end of the drliuggrr.

Although IIw rrrpnration of thr drhuggm nhould make it msicr to dmign, in]plrnmt, UHII Ilmint nil) ii

clrl)uggm for oplimized codr, it will not :mmrnnrily lW rrldc to unrrwl thr rflrcts of ol)tilllizn[iim iIIIy Iwllm

t Il:tn N nmmdil hir rfrhuggw. Oti I he ccrnlrnry, Ilw sqmrntion Hhould reHull ill n Imwr Ivvvl (If [lrl)llg~illy,

rilll~lwrt Ihnll tllnt Iwovitlrd by Nnvigntor[Z~’ltM]. ThiN seprrrntion Ilrmvnts v~ritms riIngrs frolll mmlwrl~titlg

willl t III’ WII(,IIS ct)llll)ilm to prmervr critirnl drIln nnd progrmm trxl. ‘1’hr IVWI1 of support for drl)ugging

ol)lilllizv~l r{j(lc! I)rovidrtl I)y llIr pr{qmuvl dmign Aould IN. rolllpnrhl)lo 10111111{Itvw?ilwfl hy ]ll’1llll’HK! [l II’IIK?].

4 Design of an Intcrmcdiatc Language for Debugging

!1



4.1 Extensions for Debugging

\Ycwnnt toexprW Mmnl)yd(.l)ugging functions mp~il~lc intcrnw oftli[~colnl)il~* r'silltcrlllrdiut l~lnllgllng(*.

\! ’llile this Ianguagc may be a good start, it will I)rolml)ly prove inrwfflcicn[. Our intmnwdintr langungc

Bhould be rich enough to represent mr-xstdebugging olmrations, allowing tlwm to hc compikd. l~or L~xRIiIl)lLI,

wc could add an instruction to the intermediate language rrpecificallyLOmpport conditicmu] brealil~oinlri,

IIowever, a conditional breakpoint at the murce level could be inserted by translating the cvn]uation of

i Is boolean expreaaion into intermediate code and following that hy a “branch-on-fahw” around a “pausr’i

instruction. For the sake of economy, we will introduce ncw construct.~ only when thr mmlpilr-r’s Iai]gililg(’

lackri nr=ededoperatiorw, or when neceawwyto provide important debugging RIM raclions ihrii Iliny l)il~t

mnny implementntiorw of varying cfflciemcy.

In our framework, every interaction with the program, including ill~trulllt’lltntioll rmluostri. increllwlll nl

LOX( changm, and advancing tlm program counter, io expreaaed with a sequ?nr,.’ of inst ructimrs in (1w in[rr-

Ilwclititr lnnguago. \f’P view progranl exccutirm during drlmgging as Iwo In!lrurlioll Nrfwnm, Il)r progrnl])

itwlf nnd an “im[llrdintc” comnlnnd strrmm, Intcrnction with t Iw progrnlll occurs ill I III, I_[wl]lof instruct IIuis

Rl)pnring on thr imllwdiate Conlmnlld ~1rcnnl.

‘]’0 nupl)[lrl inlrr~ctivc dt’lu.q(gillg, WC ad(l an rqwrht ion Illnt will Irlllprfrnrily illslnll illslrurli[ulh RI ROIIMS

poinl ill I Iw progrnnl ‘1’11?nmwl 10 inrwrl nnd rrwmv? grnup~ of inrit rucl inm iH COIIIIIIOII frw (Irhugging olwrw

t.ionh t Ilnl nmnilor IIIId mnl rol PxrcIIl icm. In nmnl d(”l]uggrrM, thiN olwrnl ion iri ncrotllljlisllml l~y [wmwril illg

thr Ilmnil(mvl point with m nlwrinl trllp innlrucl ion nml nnving tlw ovrrwril:vn inri[rllctitul for Ihti.r rrinslnl

Inlifm wlwn tlw t rncrlmint i~ rfmmvml, \\ ’lwll tlw trnp inntrurli(nl iH fmrounlfmvl, I INSg~.lwrnlrd rxrt’l)li[)tl

Ih fiI*I[ltd l)! Ilw (Irl)uggrr, an~lIII(*arlifmk for n Irnrrpoil]l nrr Iwrftlrllw[l,

A morr (Imirnldr oprvntion i~ nrlunlly inwnl]lng lllr illHt ruct ioll~ I.l)nt illll)lrlllf.llt t Ilr trnrrl){)illl, mIIl

Nul)nfYlurnl Iy rwl~ovillg thrnl wlmn t Iw lrarrpoint im rrl]mvml, “1’IIIIH, wr nflfl two l)lwrntimlH, rnllrtl p(llrh

mI~l unpfilrh, tf) I IICI Itlt,rrillf,(llnlr lnll~ungr,, \\ ’llrn l)nlclling nllll unl IIIlrl Ilt Ig ill rvgi~)ils wlwr(, III(, r(t(lf~ Iiwb

IWVII llr~lltrlvlnlly trlill~f{)rllml, tlw WIIIIr Ilnwlr ~lrnllnly~m Ilrrf{lrllw(l Ity tllf, rtjillllill~r I% I,t.rlimllwll rllr 1111

Ilwrlml ~ri)llp (If Illhl rurliolls wit]) rwllf’cl 1~1t Ill’ l)nlrl I Ifwnt i{)ll 10 fm~urr t lint Illr IIiilrl I Is r,um)llnl)ll’ lit

!M)ll)!i I.lwh, n pa(f~ lll}flrllt){lll Itlllv fllll llt-rl\llHts t hf. Ilntrll Illf’jlt 1[)11rlllltlllt 11Prl,l”l)llht rli(’tlm(l 11~ I Ill, (ll,tlll~~(ml,

or IWCIIUFWt Iw INLICII rf+w tf) vnlufw hint (lo m)t c.xirnl III tlw lrnll~[fwllml vf’rrnl(ul d llw I)r{)p,rlllll lhhl IIIICII+

whrrr n (Ivlluggrr llll~llt f’uil t!) rrrfm~lrurt in ff)rlllnliful nrr ~lw”rilw~l IIY Ilf’nllfws,v [llrit N2]

\\’cI A, m-ml JIH [~llfv Itlhm III I(bllt lrYAII(I IImIW n nmpwnrv of in~l rurllf)ll~ NH IAINIKIIIK t,, :1 ~r~llll, Ilinl

ttlny III. ltntrtwd Illlo R l)ro~rnlll If) fillllll(ml nfllllf’ flPllllKKillK tnsk, nn(i Ihl’11 Inlr’r rrlllflv~’!l \\ ’l’ rf’br III Iii!’%t”

Krllllllx or lll~lrllct IIMIN m fm~rftrnl.s nlill rnll t III’ olwrnlif)tl for rf)rlllltl~ t 111’lltrr’f fllf

Rliilly Illtrrllw(llnlr lmIKII:IKPR Inrk rr IIWIIIIN lr nrrrwsillK nll [If tllo tlwlll{wy Il,,,ll!l,,llh 11111111111111t,, Ill

trr,,hl ing tlllriug IlrlIll~~lnfi I“or rhmIt II Ic*, it IIIny Iw IIllll{milllli III 11’lrll’vr’ II fIt IEIIIIInl vnl IIvk IIINI nrl’ 111)1III

Illf, fllrrfv)l net lvnl IIHI rrrf)rll I“xllllllllrn 1111’lllllr’1111131IIltrrltmllnl!” lNIIrr.IInKm IIwul III r{lllil}llvrk III ( ‘ iIII,l

1“011”1’I{AN,III tl,l~ rruw, wr will n,w,l Ii} 111,)(111’yIII(I Itlitlrltmllntv lIIIIgIInMV MI, 111:11 nll WJIIIII,+ III nll n,~ii~

l)H)(#vlllWH Cnll ill. II! l’I*hWl~

‘1 III, ])ri,):rnlllllm Iilh} whlIl III l’Xllllllllf’ n mllIy,lI. II IIIIIIIII#,lt I)! MI IIIV III I III. llrlll’l,h- ‘1 II, Ilt.l,IIJI,VILI‘=,ltll~’rllll

tlInt II lntIKIIn Rr tIIt IRl Itlrlullr n Ilwhlih IIlhl II II II II IV, h rlll)lllllM I}rlwrnll) All-r I,t IItIII IIIIIX :11111111111~1111.II IIIIII I) IIIK

h !Illl~ll. Rllllt- Ilr t Illh Ilrlll’l-Kh, 1~11”llrllJ/,rllllllll@r illll~ VVI’111 111111} Wlllll Ill llrlll’1’?’l I 1,1 II ,1111,,1! 1,1 l!ll,, !%,. ‘.1:,1,



A means of resuming execution is also needed. M’e will call these two operations pause and rvsum~,

III addit ion to starting and stopping a process, we will want other operations, Thmr includr [he Ailit y

to destroy existing processes, start new processes, att,ach to existing processes to dcl~ug ttmn, and clotMl]

proce.swa after the user is done examining them using the debugger. O!her exrimples of oprralions on

processes arc (hc)sc that would support debugging In the presence of mull iprocessing, using operal ]mls for

nan]ing rind controlling multiple proccases, Finally, a sophisticated drbuggvr will want olwratic)lls to sii\.(,

and rerilore Ihe state of a promas.

4.2 Abstractions for Efficiency

Th(’re aro polrntial drawl~ackri to sl~litling the debugger into sopnralc pieces, Onr l~rol~llvll is ihal 111P I)ilrli

en~l will not know tlw ‘-intcut’s of the front end, Conscquen[ly, efficiency may suff(,r. l~m cxaml)lr, [riirillg

clIaIIges to n tlwlnory location in a nnive wny can he very timeconsumir)g. Existing dvl)uggers [D Ef’HK] il~v(,
U*IVJ~~rrll[ill~Hyslenl f~aturm 10 Inlprovt= the emlcioney of this opcrniio;l, (-)Iw KCIII.IIW Is 10 wrilo-ljrolt,cl III(,

nl~lnory page containing the monitored location \Vhen the program ~tteml~l~ to writp the pagr rolltaillil)g

IItr Ilmllll[mxl location, an cxcrl~liou is gcncratcd, which is fielded by tlw drl,uggcr, ‘1’hus lIIV drl)uggrr wily

rlllv-ks Ilwllmry rt’frrcnrrw ill [Ill- t’irillity of tlw Ilmllitrxed location, oflorl lllt~killg llii~ Illolliltmillg ol~t,riili(,ll

II II ICII IIl(m’ rllirit.] 11.

II) (Jllr Ill(}lh’1. If the’ froll! end (If III(’ dt’l)llggt’r Hll(”ClfkIi tllfIl II 1111’lllor~]OCh[llJll Sll[)llld Ill” lllOllll~Jrf’{1, 11111

hIIIoCIIIImS1111+iicII~~iI ill n IOW IOYIII WN3, lt I]lny IW IIII~)(NJHIl)ltIf~lr tilt, Ijnck (,11(.10[ IIli. Ijt,l]llgxl.r l,) ~l.t.[,xlllz,., ‘I 11,,

(li,l,ll~~f.r JVIII llt)l rf.:lll;t, I]lnt w rllt.-l)rc)[f,c[lllg llNJ I]ngr of Iilrlllf)ry C[)lltillllillg Ihr Illl)llllorwl 1111’11111)11llIIg]Il

Ill :l(l\’;llll IIMPIIII* ‘] Ill’ fr(llll I’llf! Will 11,1[IW RI)](’ to WrltC-pr(ll C’Ct1111’lllOr~Illiglmh, Iwrnllhv our nlwlrnrl 11,11

111111’h11111lllll~lrlllr’llthlil~ll of (IIIS Imck Im(l IIIMIWMI, w’ IIrml 10 ●xl)rrwi l]liH ](NV kvrl ol)ornli(JIl ill 1111nlwtrili[

\v;l)’

5 Example of Stage Interaction ax~d Fragment Insertion

‘1’1,,, f(,ll,,}vll,~ ,IXNIIII,II ~ll,,wk lII,w Ill, Irhllxf,,rlllnt i,ul Nlngrw t,f n df.t,ll~gr’r nrt to cIuIIIII,IiMl,, f,,r 111,1I r:ill+

I“,,tlll:lll(ol+ 1,~’rf(wllv’11 l,} Ill,, rr)ltll,ilt,r tdl Ilw very ~lllll)lr lIJf,lI MliInvtI Ill I“lgllrr’ 2 ‘1 Ill, lrll!ihlllrlllllllllll~

r,,llxl,l(rr(l III llIIk IIXmIIIIlr, hrf, Hlrvliglll rr,tlll(ll(lll nntl tlrn(l CINI.. f’llllllIlnllIIll ‘1 IIVWI Iw,, lr:illsf(,rtll:lli(,li~

n, tIII~ l(~~f,lll,,r rnti rt.l,lmv. n 1()()1)Vnrlhlll, with ldhor Il)(ll]rllfm vnrlnl)lrh Slw,lli(illl). III IIIIs ~.Xlillil III-, III

will *II(lIV lIIIlV 1111.11(’l,ll~~,r’r Il:tllfllf’h n r~’(lllf’h! II, Ijrlnl Ilw VIIIIIV if III!. lf)(~l, vnrl:ll,l,. I :11 1111’tll, ~(llllllll~, (1[

!111.11,111111011} Al !Ilnl ltII’11111111, IIIV vnrlnl,ll. t lInA IIWII VI II II II II IIIV1 II} tlII. r[lllllllll,r

(Ill I : (lltl

1 It!! Ill :’ A hllllllll 111111)

..
1



1
2
3
4
5

6
7
8

9
10
11
12

body :

8kip :

i-O

(i ~ II)?

golo skip

i_4xi

●[.~+ q-...

i-i+l

(i < n)?
goto bod~

Original

COLIC

;-()
i~,l +~

(ill ~ n K4+A)?

goto skip

ib-4xi
●[ivl] _ ,.

it-i+]

it)] - il)l +4

(it~l < n x 4+,4)?

goto body

Strmrgt h

Iledr.m-d

ill] - A

(iv] ~ n x 4 + .4)?
gd.o 84. ip

●[ivl] - . . .

ii’] * it’1 +4
(iv] <nx4+A)?

gol o body

rklcl Corlr

I“llilllinnlrd



To actually accomplish the insertion request, the strength reduction stage U( tlI.e debugger in I urn risks

the next stage of the debugger, the stage lhat compe-satea Jr dead code elimillalion, to insert the frnglllcnt

print i. lIowevcr, the compiler eliminated i during dead codo elimination. This maim it inlpossihlr for

the dead code elimination phase of the debugger to translnte the fragment being insrxt[’d into Hornet hing

meaningful for the next stage of the debugger. Thuo, the dead code elimination !’haae of the debugger reports

to the Btrenglh reduction phaae that the fragment print i cannot be inserted. This failure is depicted in (1w

Dead Code Eliminated column of Figure 4,

A particular phase of the debugger attempting to insert a fragment could sinlply always report. failurr

to its preceding phaae, when faced with a report of failui~ from a subsequent pl, sse. T’his is a valid ncticui,

but Let\er cours~ of action may be al ailahle to that phase of the debugger Better support of ol)[ill~izetl

code will result if phases try diflcreni t.ranelatiorw of an insert fragment operation Illnt has fniled. The ilm’rt

frqylwnt operntion requested by the prrceding ~tage cmcceeds if any of the t ratwlntiorm of t hi~ oprrntion rnll

bc performrd l~y the mt~aequent stng~ of the ckbugger. Tllua, for ench s~agr of the dehltggrr, the rillccfws of

a frnglncnt insertion in the disjunction of the mcrearuw of n]] the trtmnlnliomi of t hnt opmnl ion,

For insl nrrcc, when facml wit II the fnilure dcpictrd in Figure 4, the RIrrngt h rcducticm pllnw of t I;(’

drllllggrr could try rr diflrrcnt t rnnslntion for Ihc originrd fragmmlt. The ntrmlgl II rmlucl ioi] l]llnw of IIW

m-mpilrr crrntvd nynmlyrm of dw loop variable, nrw induct ion vhrirdllr~ tl]nt hrr nllillr funct i[~lls of t II(I

origiliill loop vnrial)lrl llning information recorded by Ilw ronlIjilrr, I hr nl rrnglli rmlucl iml phtuw of I lw

drhuggw c[in rrnct to [Iw fl~ilurr of iim fimt at tmnpt RI irmcrt.icm by rw! it ing 11)1”frngllwnt in trrllw of III(I

rww induction vhri~ldrl 111thiN cfuw tlw frngmrnt print i iN lrnn~lnlrd into print (irl - ,4)/4 M it Imsws

Illroilgl) I 1111Htrm~gtll rrdurlion IIIINIW d’ Ilw drlluggr~r, I;igllrr 5 Mlmww Ilw nurcFNNflll frngllwlll ilirnrjrliilll,

‘1’IIc riurmrw of a pnrt iculnr frngnwnl inNrwtiotl prrfomwd Iy n ~Ihasr of I hr drl)llg~m cnll Iilrm (Itllwll{l (NI

t INI conjullrtwll uf t.hr fiurrrsww of a colhwt ion of frhglntwl inmrtionn Iwrfurllwll I)y t lNI riul)wqurlll drl)ug~rr

strl.11~111
1{,. (111,,.,1

11(1111111,1/

I )1.;lrl ( ‘,,11?

I 11111111,11,11

I 1411”111 .1 11111’ttlwtlllillt. IWIIIII, PJIIIIWIIIV,:1 I“rllp,llu,lll 1111.1,111,,11

,,



1
2
3
4
5 bod~ :

6
7
8
9
10
II
12 aA“ip:

;*O

(i~n)?

goto skip

print i
tb4xi

●[A+ f] -m,
i-i+]

(i< n)?

goto bod~

Originnl

Code

i-o
iv] + A

(iul~nx4+A)?

goto skip

print (ivl - A)/4
f-4xj

●[ivl] z ,.,

j-j+]

ivl - iv] +4
(ivl < n x 4 + A)?

got.o bodu

Strength

17.educed

ivl -.4
(ivl ~ n x 4+ A)?

got.o skip

print (iv] - A)/4

●[ivl] - ., ,

ivl * iul +4

(ivl < n x 4 +A)”?
got o hod~

Dend (1-de

Eliminn&d

FIGURE 5: Intcrnmdintc code, rdlowing a frngmcnl in~rl icm

phrwie. A tranrdnt ion of thnt particular fragment mny involve rwveral fragment insert imm, all of wl)ich Hiust

Im Ruccmwful for tlw lrnmdfd inn M n whole 10 be nuclemful,

For ●xnm~)lc, if n frrqplmnt ie inmrkl withiv a rrgion of corlr thnl iR renlly two nwrgml flow pnt IN.

I]nt 11-drtcrminvr hrmkpoilllm nmRi RIAOhc in~rtml beforr tllc ntart of tlir ulrrgml rcgim, ‘1’IIIw I)rrnlilmillls

drtrrniinr which flow pul h wan nclumlly t nktw, t Iw pnt II tn tlw rrgiol) of codo tllnt rwt unlly mmt nilwd i II(I

imwrtion point, or the mn[.chillg rrgioo of code tllnt WM rncrgwl to it. If cithm thr trur Ilrenkpoint m iirn

pill II drt rrnlil]rr I,rwlklmillt ~ cnnnnt IJC innrrt.ml, t IIt-n I INI wl)(jlc imwrt oprrnt i(m f~il~,

6 Implcnlcn~at ion of tllc Dcl)uggcr

Ilw.lllnll!lll Wolllll

III I riulhlorlllnl I(I!I

Ill



intermediate code to machine code. \f’e discuss these phases in more detail below.

Front End

A particular front end for a debugger shouid be tailored to debug programs writtm in a specific source

language. ldeall y, the user interface allowo the programmer to express aa many debugging funct ions as feasible

in the particular source language. The commands are parsed and compiled into the debugger’s intern lediatr

Iangunge, perhaps using parts of the compiler developed for the source language. The commands are then

passed to subsequent Btages of the debugger. The commands generated by the front end are either accep~cd

or rejected by the back end, depending on whether or not the operation can be performed.

‘Ihrmformation StngcO

Each of the Lransfo;mation stages of the debugger unravele the effects of a particular optimization. Itiquests

from the preceding stage to create, insert, or remove fragments are translamd into slight]} diffvrcnt requests

and sent to subsequent stages, A request to insert a single fragment can result in the insertion of many

frngmentR in mrbsequen, stages of the debugger, For instance, to placr a breakpoint in a cross-jullllwd

region, the original h-eakpoint must bc supplemented witlr patll-deterrilincr brcukpc)illts [ZC18,1], [~tjfl”rcllcus

10 memory in tlw Origillill frngnwnt arc renamed to rcflccl the new locations of the dmircd Villllt’!i.

II



6.1 Interaction with Program Edits

A aophioticated programming environment nhould mupportincremental compilation. In reaporweto program

editm the system incorporate corresponding “edits” into the compiled version of th~ program. If Lhe program

ia being debugged when an edit occurs, it maybe dairable to edit the ctateof the monitored proceaa,without.

restarting the program, if ptible.

Although editi of the procaa text and ~tate could be implemented uring the patch and tirrpafch primitives,

these debugging operation are inappropriate for supporting procem edita. Editm of the proceaatext differ

from the patch= applied to mpport debugging. Debugging patcheaare transitory, being applied to return

control to the user or to monitor mme condition, Editi of the pro- text arr. more permanent, reflectil~gir

decision by the programmer to change some part of the program,

6.2 Impure Code

Some of the propoA intermediate instructions can be called meta-inmlructions, nince they can alter the

text of the ptogram, That is, they represent, nnd are ●aaily implemented aa, self-rnodifying code, This

implementation may be a proldcm when debugging programa on machines that we,., de~ignrd with tht.

atraumption that self.modifying code is rare or urmeeeaaary, For exnmple, such an aaaumption might lw

nmlc ill designing ●n inwruction pipeline, in order to improve ita speed, However, this matriction will I)(I ri

problem for all interactive debuggcra written for much●rchitectures. The abstraction present in our rleriign

mtunlly givee greater frwdom to ●aaily changr the machine dependent part to m.rit Lhr lmrticul~r hmdwnr(~,

Sinm we can rrpccifydebugging requests in an intermediate langung~, therr mr mwrr~l pussildc illll,lw

nwntations of requeatn. \Ye can convert code modifications into dat~ modifir~ticmn, rmlucing thr nundwr of

mcxlilhationrr LOthe instruction mrt=amby modifying data innLead.To accomplirdl this convmnion, the buck

end docab a new memory cell LOhold ● flag, and adds a branch, dcpendpnt 011 t]lc Ilng’ri valur, arollllll

tlw pntckd fragnwnt. M’hmI an mrrpaIcAin performed on thiu fragnwnl, thr action of rrwnving Ihr fr,~gllmnl

ml hr pcwfurmtwlhy changing the vnlur of thr flng,

6.3 Debugging at Lower Levele

12



Also, optimizntions that hinder debugging cart rrometimea be avoided by dropping LO a lower level of

abstraction. At lower levelsof ●bstraction, the insertion of a fragment in more likely to nuccecd,becauaethe

trarmlation of that insertion into machine code u more straightforward. For example, ~tting a breakpoint in

an inlkd procedure would entail patching fragmenti into all the Copi= of the procedure body replacing Lhc

call sites. The patch operation for one of these copiesmight fail, becauaeof optimization occurring only in

thnt copy. By dropping to a level whew the u-r can aat breakpoint for individual call sites of a procedure,

the one troubkome patch can be avoided,

7 Research

Previous Expric:mo

As part of Rice University’m JZ” project [CCIIt 871 to build ● programming ●nvironment for scientificsoftware,

we designed and built E)cMON, a debugger for large, comput.ationally intensive programa[CI18fl, In tII(I

comae of that ●ffort, we encounterednverai problem in extending our duign to provide more functionality,

\f’e chw s lrybrid design for EXMON, allowing the monitored proceaa to be a mixture of compiled and

interpreted cGde, Thin mixture allowed trumled parts of Lhe program to be ●xecuted quickly, but with

minimal debugging cupport, and r.lspect portions of code to be interpreted, with greater debugging support.

For our representation of interpreted nubparta of the program, we chow the abntrnct aynt.axtree, which wu

the source repraentation used by JZ”.

[Unfortunately, thie rcpremmtation proved to be too close to the wurce language, and too closely de-

termined by the need~ of thr murce ●ditor. The addition of new source language dialectti, Llm ●volution

of ihe murce editor, and chrmg~ to other partn of the programming ●nvironment rrpcntedly chnnged Ihr

ntructum of th~ trees, and these chang~ in turn required correctiormto th~ interpreter and otlwr pmls

of the dt+uggm. ‘1’his ●xpcricncr with EXMON providm.1mme of the irnpctu~ and insight for Lhin dc?igi,.

‘I”hOrmenrch wr propoac iOan attcmpl to ovcrcorncmmc of the problems with ccmvenlionnlcifdm$gcrnIllnl

wr hnvc encoun[rral. \f’P l)~qw io dulnonntratr lllnt IIlis nrw dmigu for drlmggcrs iN frnsihlr, . Kwtiv{! for

dchugging r)ptimizml code, porlaldc, and dlicirnt,

Avnilnhk TCKJIR

I :1



m.dlfied version cf the ~m debugger will br used for the initial version of the usm imerface and front A

of the debugger.

Rusearch Plan

\\’t! art’ dmlgning parts 01’ a dcbuggm-cornpiler pair, lrying to preserve opportunitiw ror op~llnlza(ioll II}

the c wnpiler. rather than con- rain optirui~ations to p~rvc &bugging support. Thus, the enllthwis (If

thI* raarch is orI debugging optimized cod~, rather than optimizing dehuggnble cmiv. Dvhuggrr ph.w~!’.

cmn~w:lsaling for the trar.wfornlations dead code elimination, strength reductiun. vnlut’ mrmbt’ring, aml

parrlal rdundancy diminatlon are being designed.

● Drad code ●lamination is tn important inclusion brcause its effmrs are dl!lkult m rrwrw’ llc’ll-

n-y in particular ncwd global dead cod~ elimination M an optinlizntmn that impalrml dt4nlLklllg

*uI}; xt[IlrnS2]



8 cmrlmiom



References

~L-arsti] T. A. (%rgill. Pi: A CMC mudy in object-oriented progrnrnming. In Nornmn Wyrowitz, cdil~w,

OOPS~.4 ./?6 Ob@.Or~rnfrd Prwgmmmmg S@rms. Languagrs and Apphrafions ( ‘iJn/rrRn,.

Pnwccdlmgs,p- 350-900, 19Ntl.Alm •p~mcing M SICPLAX Sotic.a Vol 21, Numlwr 1I.

~L”Cll+#7] A. Carle. K. D, Caoper, R. T. Ilcod, K. Kennedy. L. M. Torczon, and S. K. IVarren. A prnctmd



MD13 - A Parallel Debugger for Cedar

Perry Emrath J3ret Mar#ol/

●mrath@cord.uiuc. edu maraol@ard.uiuc. edu

Center for Supercomputi~g Research and Development
University of Illinois at Urbana-Champaign

104 S. Wright, Lrbana, IUinoin 6180

Mdb irra parallel debugger that waa developed for debugging programn on tl~e Cedar

multiprocessor architecture, ● prototype mach]ne aaaembled ●t the Center for Supercom-

puting Research and Development, University of Illinois. Mdb Wm deuigned to provide

users with the ability to interactively examine the data and control structures of an ●xe-

cuting parallel program.

The design of mdb in different from many interactive debuggern in th~t rather than

being ● separate process which controls the target program tfrough the operating system,

mdb is a package of functiorm that are linked with the target program. While this meana

that mdb ia not totally isolated from the target, it haa the ●dvantageo of being relatively

simple to implement and can ●xamine large amounto of program ntate very ●fficiently.

Buth these advantage ntem from the fact that program date in directly ●ccemi ble

without requiring ●ny operating syetem ●rvirca,

The ntructure of the mdb package was m ~tivated by the way procewu vxecute on

th~ target architecture. The Cedar architecture im s multi-clrnrter ●rchitecture with a

hierarchical ohnrrd memory, with each clunt~il conf dining multiple vector procmaorn. A

pbrallrl program runs on C~drw M a parallel procem which eonnintn of multiple tasks,

F:ach of the tanks within the procenn cxecutcm on a single cluster, and m~y run on multipl~

prncrwnorn within thr cluslm, from onr up to All (R) of the prccrmmrn in ttw cluntm. ‘Tlw

Xylrm opmmting ~yrrt.cm, baa~d on {Jrrix, pl widea srrvicmr LOsupport t.hrmr mbntrkctiwm,

To control thr procmn it in rmcennary for the debu~qw to hav~ control over all t~kn

in the prorcnn. Thin in ●rhicvml hy hnvin~ t.hr rd)ility to rommunicntr bclwrwi t~kn by

plncing datn in nhnrcrl memory nnd rending intmrruptn using facilitirn in Sylrm, MdlJ

comm in two Ilnvors, ● d..andard vcrnion which is unrd hy lil~kin~ n progrnm with tkr



a

-Idebug library, mid a -tripped down vereion which is included in the C run-time library.

The minimal vereion gets linked with every program, w umro alwsyt get ●t least thi~

level of debugging mpport, and can -imply consider it part of the opersting nyatem.

To allow ●ntry into the debugger, mdb initialisa the nignal handler interface to

have most traps and some eignals handled by the debugger. Thin initialization u per-

formed M part of the run-time library startup code for the fir-t taak. in the process. AE

other tanks ●re spawned in the proceea, theee intirfacee are copied so thatalltaakswill

normally●nterrndb when any of the caught signals occuro. Mdb catchea the QUIT sig-

nal, so while a program in executing, the user may interrupt it and uoe mdb to examine

the state of the proceam Alternately, the umer may irmert a call to heakpointo or

panico in order to enter mdb ●t that point.

The first task that ●ntirs the debugger becomes the controlling tea,”and interrupts

all&he other taaka within the procees u quickly u pomible, uning facilities av~il~ble in

Xylem. AJ th~ other taeka ●nter the debugger, they block to wait for further commando

from the controlling taak. The controlling tsak then nete *bout reading and ●xecuting

uo~r c~mmands.

‘~’o the user, mdb i~ -imilar in nature to a con’.’entional breakpoint debugger, such M

●dh. Howeverl mdb knows about the multi-tru..king model described above, M well M the

●rchitecture of th~ Alliant multi -procemor, Commando are provided which allow the

user to ●xamine the ●ntire state of the program, which includen ehared memory, private

memorien, any of the rcgint.ere in any of khe procemornl and ccrt.nin nyntcm nlmte vari.

~bles. Memory can b displayed in a varivty of formals, for ●xample hexadecimal or

floating point, In t!w full ver~icm of mdb, an instruction format i~ provided to allow prw

gram disumbly.



In eddition ta examining the memory of the tesk, the controlling t-k can aleo

ex-mine the hardwme Epeci6cetate that wee caved when the tti entered the debugger.

Thie caved state includa general pur~ regieters, flomting point regi-tere, vectar regi-

ters, ead concurrency registere. Th~ vahm we rovedforml]oftheprOeeeeors eaigned

to the tack. Slmller to the way thmt tukm arc eelectad, ● proceeeor can eleo be eelected

=d then mllthe caved valua for that pr~ r can be examined.

In the full version of mdb, the unr cm loed the eymbd table from the executable

file, fir which eymbolic n~mee cm be umd in expr~ione. Valuee cm *be dieplayed

u eymbolic ddrenu. Decoded lnetruc~ ead cdl stacke will ak be dieplayed with

addr~ in eymbolic format.

After the user hes examined the state of the proceee, the proceed command SNOW-

●ll tacks which have not ●ncountered an error to continue execution. Teak- which have

●ncountered ●n ●rror remain waiting in mdb until the proceee exite. A few other special

commsndo ●r~ ●leo provided. One returns the (-tart addreee of the) hmndlerfor s

epecifled -ignal. Other commsnd- give the umr information about the object file from

which the ~ymbol t~ble wee loaded,

Since m mlnlmml ver-ion of mdb is linked with ●ll program~, it muet ●leo function

when the program Ie run non-intersct.ively. When s proceee 1- mtsrted, mdb ●ttempte to

determine if the proceeeia being executid interactively or not. If the proccee ie being exe-

cuted inkrsctive]yl then the debugger functiono M deecribed above. If not, then when the

d~bugger ii ●ntered it executes B short lint of commando, placing the output in B file, alter

whick the proceee ●borte. The command- ~ttempt to provide the ueer with ●nough infor-

mation to determinr where the ted WMwhen it ●ntered the debugger and why It ●ntered

the debugger.

Mdb ha~ bwh dwdoped M s tool to ●now the ueer tu ●xaminr s currently ●xecuting

proc~, but it doee not allow th uner to mmkeany changm to th~ procem. Future work

Is being coneldermd to ●now the ueer to chmngc values In thr proceee ●nd to eet break-

poha. Even wlt.bout th~ ●nhmcement-, though, mdb hmnprovm k b- a very ueeful

tool for debugging pm~llcl progrmmm TIIF cnp~bllitlee of mdb hmv~ evolvml - It wen

u-d to debug Itedf during dwelopmmt ●id th~ unw lntmf~~ WM retln~d repe~tedly M

runtinuwl uw nuggmtwl channm to mmk~drlmgglng Fulrr. F-dlmrk from thr unm cum.

munily hu g~n~rhlly b~rn favormld~ ●nd m ●ignilirmll numlmr of rd IJUR* hnv~ Lpn

●anily ●nd quirk Iy found mm ttw faulty Imogrnm WM Ilnlwd wilh Iddmg,



A repla mechanism within an environment for dis-
Jtribute programming

S. Chaumette
LaBRI, Laboratoire 130delai8 de Rechemhe en Injormatique, URA numkru 130~, Univerait{
Bomkauz-1, 951 Courd de la Lib4miion, 99~05 Talence, FRANCE.

Most of the languageo for distributed programming provide non-deterministic mnotructs.
Although enabling efficiency enforcement and increasing expremion facility, these comrtructrr

had to the need of replaying an execution when willing to &bug an application. The aim of
thio talk is to describe a replaw meehanism and how it is used for debugging purpose within a
p~mmming enuirwnment. The dmcription will encompam many aapecta of this mechanism,

from its aemanticn up to a uae example which will be emph-ized by meam of ● debugging
~sion; an efficient implementation in ● centralized nimulator will aiao be expounded. 1 will

conclude with remarkrrconcerning non.intrusivenem of debugging mecha~isme, This work” is
part of a research carried out at LaBIU (Laboratoire Bordehi6 de Recherche en Informatique)
which consiatn in deoigning a programmingenvironment for distributed memory machineti.

The model: proving non-intrusiveneam of debugging mechaniamo

Our model in that of ezplicif pamllelism, that io ● program is expremed aa a aet of processes
communicating by niemmge-passing, via a medium called a communication port (aa in CSl)).
The non-dct.crminiutic primitive it provideE (which i~ called ready) enaMea to rrckt among a

act of porh$ one frcm which a memage io ready to bc rcccived, The replay techrric~ r( n~, 1. N

a refercnm exocuticm during which local traceg with minimum information are recor(kd. (A

moni(ors arc then derivuted from these traces and are urredto conf rol a reexrrutiun. i:. has

km prcwcn that tllig mechanism harr no influence owr the behavior of the zct of pm{cmwi

undm control: it in non-intrugivc. The fact that the rrcmantim of the Ianguagc and that of tlw

cent rollcrrihavo been modclizod makeri it lJonsi MC to prove thi~ properly,

Replay: a debugging tupport mechanism

A rioil-(lotcrll]iliititic prograni cm bp drawn M u tr~, ciwh branch of which is M pomildr
path of Llw liotl-d(~l(~rllliili~tic IAmvior. Arinumra IJIIR cmurn in CJIWof tlw hrmnchcw; thtm,

anotlwr cxcwution may follow anotlmr pal h. prmwnt ing t Im lmg to take placo again, 1%0 ropl;ly

nlt’chuni~nl cmurm thrit lhc RHHWhranrh in urwd, what will mlhidr to WIJrCdlJW thv hug und



therecorded traces must be downloaded from the host computer into the controllers. This
implies overhead and heavy load of the communication network. Anyway, this implementation
is a good one, in that ii does nof rvquire recompilation of the application, what is a time-saving
and safe debugging technics.

Our environment provides a ceratmlized airnulatofidebugger whichisimplementedsothatthe
simulationofanynumberof proce,men requires a ~ole UNIX procens, This mr&es it possible to
build the controlling mechanism in the code ~imulating the communication system: this preventg
increase in the number of (simulated) processes by suppressing replication of the controllers;
the overhead due to the collection and distribution of traces is also discarded. No recompilation
is needed.

It should be noted that it itrpomible to implement this mechanigm in an efficient manner
on a distributed machine.

Debugging sennion

There are many didributr f applications, such as ray-tracing or matrice~ block calculus, which
can be expressed using non-deterministic constructs. For the sake of demonstration, use of the
mechanism can he shown on a simple problem which consists in computing the quotient of two
numbers. Amume two processes (procena 1 and process 2), each computing a value, Another

process (the onc in which we are int.erefited) receives these values (via ports p] and p2) and

computes their quotient x=(value Bent by process 1) / (value sent by process 2). Thi~ last

operation can be achieved using a non-deterministic algorithm in order to enforce efficiency by
receiving 1110 values “W 1100n ~ pOSSiblew.

begin

ii/:= [1)1,1)’2]:
p:=remcty(mel ); receive(p,al);
Ecl:=ul-p;
p:=mdy(mel); receiw(p,12);
x:=I1/r12;

J ]

z .’=



AN lhTEGRATED APPROACH TO REPLAY ANALYSIS
OF MESSAGE-PASSING PARALLEL PROGRAMS

CHADH-

Thc MITRE Corporation, Burlington Road, Baiford, MA 01730
Email: chad@linus,cnin. org

Phone: (617) 271-2146

AtISTRAm

Complexity and nondetcrminism can produce unprd.ictable results in parallel programs.
An effective paralleldebugging environment must manage both of these impccliments.
Described here are five novel solutions resulting from a combination of existing
techniques for e.ecut.ion replay and behavior analysis: (1) examination, analysis, and
modification of events that have yeclo OCCW,(2) coopcmtivc analytica.1strategies ihar
combineconventionaldsbugging, graphic suuc mapping, and behavior-onenwd anal~sis;
(3) cxpcrimcntarionwith event ordering in suspect program fragments; (4)
communication-rclatd performance measurement; and (5) ana.lj iicd capacity that is
potentially scalable wilh system size.

1, pwTROWCnON

Debugging is amimportant acbvify in program development and maintenance [1]. II can
be particularly difficult with parallel progmms, since they arc often complex [21 and can
behave nondctctministica.lly [3]. To a great extent, this complexity tiscs from
imcrwions between multiple loci of control in what arc typically large applications,
However, squcntial and parallel debugging differ most in that concurrent programs may
suffer from intenn.ittent errors. Such problems arc manifestations of races. This is a
condition that may exist when IWOor more threads of control pa.nicipatc in
unsyrwh.runizcd access [o a common resource.

Races arc well illustrmcd by the the readers/wrifers problem [4]. Imagine scvcrul
independent pmesscs that manage a bank account. Each of these may carry out three
types of operations: ~bmining an accountbalance, cmiiting deposits, and debiting
withdrawals, The steps rquimi for each operation arc shown below:

Obhdn Balance

REAII Balance

Credit Deposit I IMblt Wlthdrmwd

READ Balance REA1> Balance
ADI.) Amoum to 13tilancc SUBTRACT Amount from IIuhmcc
WRIIZ 13ulunce WRITE Fhlim’c



Balance operationsrnmlyreadtheaccountbalancewithout changing it. Consequently,
any number of balance operations may occur successfully in parallel. In conUas4 both
deposit and withdmwal operations rctite the account balance. If two such operations on
the same accoum overlap, the balance will reflect only the last operation to complete.
Tmnsactions can be guaranteed only if operations that titc to the same account are
serialized. Without this synchronization, a race condition exists, and transactions are lost
unpredictably. FuKIwmmre,such nondetem.inistic results vary from mn to run.

When attempting to identify the source of the problem, a programmer must contend with
multiple processes. In addition, since the error is dependent on relative process speeds, it
may only occur intermittently and may not be mdily reproducible. Emors may cJso be
maskd by a debugger that impacts process speak nonuniformly. This phenomenon is
often referred to as the probe @ecr [5].

We arc cu.rmntly developing a prototype debugging environment called PAFWDIGM.
Thissystemisbeingusedtoinvestigatetechniquesfordebuggingprognunson
unmodifiedmessage-passingmulticompuwrs.PARADIGM addressesboth
nondctetinismandtheprobeeffectthroughexa.taon replay [&l 3]. This approach
permits intetirten[ erTors to be captured and rcproducd. Ex=ut.ion replay 1sdiscussed
in section 2.

PAFUDIGM martages complexity by means of behavioral abstraction [1>23]. This
approach ueats a parallel program execution as a collection of event streams. Distinct
events represent selected program actions. By recognizing and matching related events, a
bchatioral abstraction system can reveal interactions, dependencies, and tmdsi This
strategy is discussd in section 3.

Considered individually, execution replay and ‘behavioral analysis are valuable debugging
mols, bul togetier, their potential exceeds the sum of their individual contibuaons. The
benefits of this synergy are discussed in section 4.

2. EXECUTION REPLAY

EITors in parallel programs often involve races. Tbcir reliable capture and study therefore
rquirethatbothnondetmn.hismandtieprolxeffect be addressed Execution replay is
one approach hat has been appliui successfully. With this scheme, debugging is divided
into IWOphases. In the recording phase, information ctitical to the ordering of events is
collected during execution, Checkpoints may also be made. In the replay phase, the
execution is reproduced by enforcing the same partial ordering of events as recorded
previously. Consequently, efiors arising from nondeterrninism arc preserved.
Furthermore, the replayed execution may be pausul, single-stcppd, or rolled b~ck to a
checkpoint without impact from the probe cffut, During the recording phase, however,

perturbation results unless special-purpose hardware is used 10 collect the event ordering
inforrmicm [24, 25]. A software-only approach mus( therefore minimize its data
gnthming during recording or risk invalidating tic inforrrmtion colkctsd. If sufficiently
unobtrusive, Sof[ware-busd insaumentation might Ix left in pl:’cc,

2



Futuregenerationsofparallelmachineswillmostlikelyhaveafleastsomemonitoring
supporthardware [26]. At the present, however, these facilities are cm.ly, arid the
debuggers that use them arc nonportable. For dwsc reasons, PARADIGMemploys a
software-oriented approach that makes full usc of existing hardware, but does not require
the addition of debugger-speci.tic quipment. Machine dependence is confind co an in-
place component called the evenr inre@lce. This potion of the debugger exploits any
existing hardware to record and replay a parallel execution. During replay, the event
interface also passes information on program behavior to resident analysis facilities.

The event interface suppmts passive collection of progmm events [27]. In other words,
rather than capturedatawithspecial-purposelilmariesoruser-supplklinstrumcnlation,
kcmel-rcsiden[facilitiescaptureeventsastheywcur.Kernel dependence has its
drawbacks, namely, that porting the event imerface to a new platform requires expernsc
in kcmel programming and access to kernel source code. However, the benefits of
implementing the event interface at the kernel level an substantial, for example:

NC special-purpose hardware is rquired, but any that is present can be used
effectively.

TIMprobe effect is kept acccp~bly small, even without the aid of special-purpose
hardware.

Compiler or library modifications am obviatrd, and debugging is language
independent.

Replay capabilities are extended to convenuonal debugging environments in a
transparent manner.

lnfomation re-quired for pefiomance analysis can be gathered.

Debugging is still possible when source code is unavailable.

Debugging information is maintained in a separate addms space, where it cannot
be m6&fi&! by the prognm being debugged:

There are Iwo styles of execution replay, which are distinguish by a logical or physical
viewof time,Theuscof logical time was pionceiul in l~s~i Replay [7]. This system is
based entirely on the order of events, Its nxod.ing phase capture the order of operations
on shard resoumes, The same ordering is then enforced during subsequent replays of the
execution. Since timestamps are nut used, replay fidelity is independent of sys~em clock
precision,Such accurate replay is itself a valuable debugging tool. Having witnessed
am!capturedcmmeous txhavior, a programmer may often be able to verify co&
comections by subjecting them 10the me conditions that previously elicited an error,
However, [his is no[ always possible, If art error dirutly involves the order of operations
on a shared resource, a corr~tion invalidates the capturd histo~, and replay is not
possible.



A sharply contrasting style of replay bad on physical time was introduced with BugNct
[8]. This system timestaxnps the messages of each prcxcss as they arrive during the
recording phase. Replay is effected by delivering each messageatapproximately the
same time as in the recorded run BugNet’s reliance on physical timestamps constmins
its replay fidelity to system clock precision. However, replay is centered on external
message events and is independent c.”intraproccss event order. @nsquently, it is
possible to vcriQ any comoction that does not affect extemml message events.

PARADIGM supportsreplay based on logical time. Unlike Instant Replay however,
each event in the underlying partied ordeTdiagrams [28] includes a -stamp. The result
is a timestarnpd panial order. Cbigina.lly included to support physical time-based replay,
these amestainpsnow appear to be more useful for performance analysis. This is
discussed in section 4.4.

.

.

.
msg_id - irecv (3, buffer, BUF_SIZE) ;
for [i - O; i < 1000; i++)

if Onsgdone (meg_id) )
break;

else
do_work (~) ;

if (i >= 1000)
msgwait (msg_id) :

.

.

.

Figure 1. Emoneous Rogram Fragment

Consider the tmcurramfragment in figure 1. On the Intel iPSC/2 multicomputcr, ~recv (J,
.“

msgdone (), and msguait ( ) are all communication-related system ctd]s. he irecv ( ) in
the first line requests Ihat a message of type3 k placed in buffer. Irecv ( ) does not
await the mival of an appropriatemessage. Instead, it returns a handle that may be used
later w determine the receivestatusor toawit messagedelivery. This handle is passed
to the msgdone ( ) cdl ~thin the for k30p. If a mCSSl& Of IypC 3 has tiVCd, msgdone f ~

returns 1, indicating that the receiveiscomplete until thatume,however,msgdone ( )
returns 0. Shmdd the loop be exhausted befmethemessageisdelivered,msguit ()

suspends exwxtion pending its tival.

The timcstampcd partial order for this fragment is shown in figure 2. In this simplified
diagram, the single timeline represents the hisloty of events for the ncxlcon which the
hgmcm was active. Events Occurnng prior to the fragment’s invocation are not shown.
Here event 100con’es~nds to the ~rec~~ ( ) system call. Ftier along, the incoming arc
represents an anivi~g message. As with the ~recv ( ) even~ the arrival is timestamped.
The identity of the originating ndc is also recorded. (In reality, the arrival information is



.

stoml in the rcmtd for event IfX). It is shown separately hereto highlight the message
arrival’s temporal relation to program events.) The final event shown is numbcrul 620
and rcprcscntsa successful msgdone ( ) call. Bctwccn this event and the i recv ( ) arc 519
intervening and unrecorded events. l%esc correspond to the msgdone ( ) events that could
not succccd until the anival of the message at time 1418. As explained Mow, these
events need not bc rccordcd. Replay rquircs the capture of only those events that
involve communication. Alsonot rccordcd arc message ~ntcnts, as these arc

rcgencratcd by fhe replayed program

Noda2
1:00

\
1:00 1:10

100 620

Figure 2. Timcstampd Pmial Order for Etmneous Rogram Fragment

Imagine that the program fragment in figure 1 produces incomct rcsuhs when
do_work ( I is executed more than 500 times. The cmr is dependent on the dative
speeds tmwccn the process that contains the fragment and the process that supplies d-c
message. Consequently, the problem only occurs intermittently. Furthermore, it may
ticvcr manifest itself if a mdirional debugger is used to study the fmgmcnt’s process in
isolation. In this case, monitoring activity may slow the process, causing the message to
arrive much earlier in its exaxion.

PARADIGM’s cxccunon replay facilities ensure that any errors, including races, arc
prcsmmd. N~ special action need& taken until an error occurs. At that time, a
timestampcd partialorder is rccovercdusing the replay systcm, The behavior can then bc
rcproduc~ by comparing communication events in the rc-exc.cutcd proflarn against thosc

in the tirncstampcd parth.1 order. When the irecv t ~ is rc-cxccutcd, the replay system

can dctemine that node 2’s rncssage is to bc rc.ceivd. Should a message from a different
node arrive earlier, it is ignord The next519 events arc unrecorded msgdone ( ) calls.

By their abscncc, the replay system infers that these rcprwiuccd crcnts must fail
regardlessof the anival of node 2’s rncssage. At the S2@ nwgdone ( ) event, the call is
allowd 10sucacd. If thecxpcctcd message has not yet bean rcccivcd, execution is
suspended pending arrival.

Because replay is not dependent on timcstamps, PAIWDIGM provides accurate replay
even when high precision system clocks arc unavailable. Imagine that tie pmgrarnmcr
replays the erroneous executionwithina conventional debugging environment. After
dctcimining the cause of themor, hc decides to malify do_work ( ) and rccompilm his
progmm. The ncw exocutablc may b @stal using the replay systcm and the original
timcstampcd partial order. If the error has not kn ccmrcctal, i~willmanifesti@i again,

5



A problem occurs when the changes to k made affect the order of communication
events. For example, imagine that the programmer mrrccts the fragment in figure 1 by
limiting the for lcmp10 SCM)itctations. This modification also reduces the number of
m.sgdono ( I events and, hence, invalidates the event sequence rccorkl in the
timestampcd partial ordering. When the replay system detects such a deviation from the
rcmrdcd partialordaing, it will disable monitoring and return so the recording phase.
Debugging can be subsequently resumed from the newly rcmrdcd Imnch of the modified
exccutioll.

3. BEHAVIORALABmRACTION

Execution rcp!ay helps a programmer cope with complexity in two ways. First,it allows
hcrtnittcnt mors to& examinal interactively, and this enables the user to betterfocus
his attention. He may single-step, breakpoint,or even alter execution. Second, it
provides a simplified representation of program behavior, being basal on the event
tiel. his is not sufTlcient, however, as even a sequential program can generate
thousands of events per second. Although a monitor can assimilate such quantities of
information, it is unlikely that a user can. Parallelism only magnifies the problem. One
solution is to allow the user to filter out all but the events he is interested in, Thiscanstill
beanunmanageable volumeof events, however, and tic relationship between events can
bc unckar.

PARADIGM’s analysis capabilities wiil be providal by nale-resident moniror agents.
By themselves, behavioral abstraction systems [14-23] do not address the probe effect or
errors tising from nondetcsminism. In our system, however, the event intcrfacc converts

reproduced program actions into a stmrn of primitive events. These are provided to the
monitor agents, where they are compared against patterns in Iulcs. This comparison may
result in abstract events which describe higher level tuhaviors. Abstractevents can, in
mm, be combined, and may represent activities across processors.

Behavioml abstraction plays four major roles in PAFL4DIGM, Its fust role is to enable
automatul reasoning atmut program behavior. ‘Thiscapability is ncdd in order to
identify meaningful occurrences and trends rrom the great volume of events posted by
parallel programs. The second role is to control progmm behavior either manually or
bawl on this analysis. Having control over a program’s behavior will enable the user to
enfome specific event orderings, alter communication patterns, or take whatever other
●ctions arc necessary to isolate an error. The third ml? involves direct quctying of the
debugging environment by the user. ~bugging is a creative activity, and will often
rqttirc the full faculties and intuition of theprogmrnrncr. These can best be brought to
bear through an inicgrat~ query facility that allows the progranmwr to test assertions
abou~a program’s execution and todrawhis own conclusions. 711cfounh and final role
is to drive the user interface, Graphic displays enable the programmerto rapidly obtain

tn overall understanding of global state and to identify particular progmrn components
which arc suspccL

6



Conclusions

● Debugger should be part of a integrated environment
that provides a variety of views into a program

● A view of the program for controlling the execution
with break-points, checkpoints, or other means

● A view of the source code that supports debugging
along with editing and compilation

. A view of memory that supports annotated displays,
symbolic browsing, and system information

● A view of files in use that shows both status and
contents including any buffers

● A view of program calling sequence with parameters
by name and value

● A view of inter-task relationships for parallelized
code - timing, status, events, locks, semapho$, etc.

● A view of generated lcw level code for corresponding
high level source



Conclusions - SpecificFeatures

. lnte~rationwithstandardcompilersandeditors
● Debuggershould supportfullsyntaxusedina program

includingpre-processordirectivesandintrinsicfunctions
● Symtmlic information with all compilations as the default

● all levels of optimization

. Fastrespometimeand easy to use

. Debugger shouldwork for runningprograms, core dumps, and
checkpoints

. Fast conditional break-pointsand memory watch break-points

. Bounds checking for arrays

. A symbolically annotated window into memory with
selectable formats and symbolic searching

. A display of memory layout - a memory map

. Tracing of selected code segments



. Code splicing - a way to insert new code into a running
program

. For parallel

● per

processing:
processor windows and

● memory reference trace for

● complex queries of parallel

break-points

shared variables

variables or arrays

● message passing traces for distributed memories

● graphical displays of events across all processors

● reliable real-time clock



bdb: A library approach to writing a
new debugger
Benjamin Young,Cmy Computer Corporation

Abstract

- is a new source level debugger being developed by Cray Computer
Corporation. Work has been undcnvay since May, 1990 and it was officially
released to customers in October of 1991.

To accomplish our design goals and to simplify implementation, we chose a

library approach to the debugger design. We split debugger functionality into
several different areas (many of which were common areas for other tools). For
each area wc designated a new library to be written or used existing libraries
from other sources where possible.

The end result of this design technique is a very modular debugger which has
ken or can be extended to multi-tasking debugging, disrnbutcd debugging,
process monitoring, symbol table debugging, dump debugging, and many

other useful tools,

. .

STNWO1O CroyCompuWr Corpwdon 1



Prdaa Mb

Preface

This is a work in pmgmss paper about a new debugger named ~ being
designed and developed by Cray Compmer @pomtion (CCC). Although
there is much work still to do on bdb, it has been used internally at CCC since
November of 1990 and was first released to customers in October of 1991.

= is a source level debugger designed to debug lmthC and Fortranuser code.
It is able to functionally debug single and multiple processes as well as single
and multi-tasked applications. It currently supportsthree user interfaces (a
dbx-like line trmde,an X Window system Athena W]dget mode, and an
OSF/Motif male) with a fcmh user interface cumently being tested internally
(OPEN LOOK mode).

Initial bcib design goals

WEcn work started on ~, we had several design goals in mind. These
included:

9

D

Full symbolic capability for Fortran and C.

Ability to debug multiple independent processes.

Ability to debug macrdmicro tasked processes,

Ability IOconnect to several differenf user interfaces.

Ability to rapidly prototype new user interfaces.

Ability to share debugger data with external processes (intended mainly for
data visualization),

Ability to debug distributed processes.

Ability to debug optimized C and Fortran code once the symbol tables
supported it,

Functional dacompoaltlon for Wb

To support these goals and to allow for incremental development for each
design goal, we identified five main areas of debugger functionality that should
be split out of thedebugger into lheir own library or set of libraries. These were
the areas of symbolics, data displays, process control, user interface, and
disttibuw! communications,

For the ama of symholics, a new library (Iihsym) was developed thnl provides
a simple (or at least u “more” simple) in[erfticc 10 ihc loader ~nd compiler
generwcd symbol tables,

.. . ... . .. ..... . . ,,.,.-.-— .—-. = _____ ___ .

STNWO1O Cfmy *mpuw Cmpofdoil

.-. , .

2



Sym&llc Llbrsv (Itbsym) Mb

A new librarynamed Iibdis was created to handle all data displays nccdcd by
the debugger.These included disassembly displays, symbolic displays (where
data is fmatted via a syrrdmlictype definition), and dump displays.

Theprocess wnfrol library (libbdb)provided the interface betweeri the
debugger and the processes being debugged. All communication between -
and debugged processes occurs via this Iibrmy.

The user interface required several libraries. The lowest level librruy was the
Tc1library (libtcl) that provided a consistent low level, sting based, interface
to the debugger. On top of that was built the windowing librmy (libwatson)
that provided the windowing capabilities needed by the debugger.

The final library (Iibdoyle) is for distributed communications. This library is
still under development. Its function is to provide a simple Tcl based
programming interface between the application (in this case, W) and other
systems on the network and it is integrated with the window system central
loop.

Symbollc Library (Ilbsym)

The purpose of Iibsym was 10pqwide a slandard in!crface for application
programmers to usc to access the symbol tables generated by our compilers
and loader,

When Iibsymwasdeveloped, there were two main design goals in mind. The
first was that the Iibrmy should be at a high enough level to hide most of the
symbolic formats used in the symbol tables. The second was that Iibsym
should be at a low enough level as to nol hide any of the information available
fmm the symbol tables.

The abstraction that the library lays over the symbol tables involves breaking

up the tables into sets cf modules (one module for the loader tables and one
module for each compilation unit and common block), Within ench module,
the libraryassociates a numtxr of variable definitions, type definitions, line
definitions, and scope definitions,

Stmcrure pointets are used to pas? information to and from the library. These
structures also hold all “static” information needed .-bout the symbol tables
thus freeing the Iibrwy from requiring any static storuge. This allows the
library to easily handle any number of symbol tables fmm any number of

hinties, till within a single progr~m,

..... . . . . -.—-.. . ., .__,. .. . ,.,

8TN30019 CrOy Compumr COrpormlon

. .

3



D18PlayLbruy (Ilbdls) Mb

When a user first initializes a binary’ssymbol tables, the library will return to
the user the number of modules conmincd within the tables. ‘he user can then
query the library for information almut each individual module by number, For
example, a user could request information about module “1”, module “2”, up
to module “n”, the numberof modules in the tables. ‘IIremodule information
returnedincludes the numberof variable, type, scope, and line definitions mat
am included within the module. From this, ‘*c user is able to get information
about individual variables, types, scopes, or lines by number. For example, a
user could request information about variable” 1”, variable “2”, up to variable
“n”, (n being the numberof variable dtinitions in the module).

As a shortcut, much of the information from Iibsym could also be rcfercncd
by name as well as by index. For example, a user can ask for a variable by
name, and have the library perform the namecompwisons, returning a vaxiablc
definition on!y if the name is found.

As our symbol table fomats change (to eventually include symlwlics for
optimizmions), the structures usti to pass information between the user and
Iibsymwill grow to include the new information, but the base information will
remain the same to pmvidc backward compatibility for the library users.

Display Llbra~ (Ilbdls)

The display library (Iibdis) was designed to produce all data displays neakd
by bdb. Ii can produce disassembly displays, dump displays, and symbolic
displays.

To usc Iibdis,the user selects the type of display necdd (disassembly, dump,
or symbolic), passes in a pointer to the data IO be displayed, passes in a
symbolic type definition of the data (generawd by Iibsym)if a symbolic
display is rcqucsmd, and passes in any additional formatting overrides needed.
Iibdis willthenreturn to the user a char pointer that points to a formatted
suing,

Process Control Library (llbMb)

The process control library (Iibbdb) provides a simple interface to controlling
a process and reading or writing a process’ memory and register spIIce,

Using Iibbdb n user can:

■ Attach to u process

9 Src)pHprocess

. .— -—. .——.. .—_ ___ .,—._. .——. . .. .. _,.._ .—.._... . . . .. .. . . ... ._ ._ ______..

8TNM016 Cmy timputor ~omilon 4



Ussr IntorfscsUbrnrloo bdb

Restan a process

Read or write its memory space

Read or tite its registers

Send signals to the process

Stop a process just @or to it receiving sckctd signals

Stoptheprmessonexcc

Stoptheprocessoncnuytoasystemcall

Stop the process on exit from a system call

Read system level process structures

To perform any actions on a process, the user must first“open” the process via
libMb. Pnxesscs arc identified using the system process id (pid) number.
libMb will allow any numberof “opened” processes and the user identifies the
process of interest via the pid number.

Once the user is finished with a process,the user then “closes” the prcmss via
Iibbdb.

Ussr Intorfac. Llbrarles

Although several libraries were developedto suppa? the object style
programming nccdd to support graphic user interfaces, bdtr depends on one
key library, Iibtcl.

Iibtcl was developed by Professor John Oustcrhout of the University of
California at Berkeley. Tcl (which stands for Tool Command Language)
provides thelow level interface to bdb. Tcl is, in many ways, a string
manipulating programming language. It is an interpreted language that can be
run by typing in individual Tclcommands at a terminal or can be run from files
containing Tcl programs (we call hem Tcl scripts).

There were many advantages to using Tcl as the low level interface to MUXAs
a start, Tcl provided the following language features to the bdb interface:

● Global and local variables

● Arrays

● Callable procedures (with parameters)

● For loop constructs
● lf-Then-Else constructs

● Formatted output

● User defined language extensions

.— ..- ——— - .—.,.—...— —-— -—.- .- . ..—.— — .-— —

UTNW18 CrayCompulw Cotporollon 5



A ~gglng Programming Langum~ Mb

Of the above features, = makes heavy use of the user define language
extensions available in TIC].lle set of low level bdb commands arc defined as
extensions to the Tcl huqpmge. As new features and commands arc added to
bdb, they arc in rum added to the bdb version of Tel.

A DabugglngProgrnmmlnghnguago

In many ways, users can view bdb as a debugging programming language with
which users can write interpreted programs. By creating the bdb extensions to
the Tel, the user is really dealing with a supcrsct of the ‘Ikllanguage. when the
user is running bdb in line tie, the user is simply typing in Tcl commands to
a Tcl interpreter which is stated when bdb is invoked. The user could just as
easily write Tcl scripts (programs) and invoke the smip!s while running bdb to
control the behavior of their debugging session.

To develop the window interface for hub, we added a new library (Iibwataon)
to bdb. Iibwatson, much like bctb, added several extensions to the Tcl language
that would allow the user to create and manipulate several different types of
windows. Once the Iibwatsonextensions were added to Tel, the window
interface was created by writing a set of Tcl scripts that would create the
windows and drive bdb.

Iibwatsm was developed to support several different windowing look and
feels that include Athena Widgets, OSF/Motif, and OPEN LOOK. The
multiple window support was developed in such a manner as to make the look
and feel styles transparent to - and the Tcl scripts that mn it. The only
changes nec.dxl in bdb to support OSF/Motif instead of Athena Widgets is to
link in the X Window OSF/Motif library instead of the X Wndow Athena
Widgets librzuy. There are no code changes ncalw+ in either bdb or the Tcl
scripts. All differences are hidden from ~ and Tcl by Iibwatson.

——— —— _____ —— —---- --.- .—. ——. —
9TN30010 Craytimputor Corpormllon U



Mhg h ●ll Togottw Mb

iil!i-=-----
u

1: -1/fcQlt f

.—. .
,-41 II

I

- IBl

l= currm?rams Smomd Ill
m

.....

Putting It all Together

In many ways, bdb is a driver program that drives the above mentioned
libraries. To give an example of how *$c libraries work together, the following
steps illustrate what w dots when the user asks bdb to display the value of a
variable.

—.- . ——. ..—.. —. -—.
ST-10 CrDyCompulw CmpomUOn 7



Otlw Tools Mb

User typs “print foo”.

The bdb Tcl intmpreter evaluates the command and calls appropriatelow
level ~ routine, passing in the sting “foo” as the parameter.

bub calls the symbolic libnuy (libsym) to look up the variable named
‘%0”.
Iibsym returns the symbolic definition of foo along with its address and bit
size.
- calls the process control library(libbdb) requesting a read fmm the
address returnedby Iibsym.

Iibbdbreturnsa data pointer that holds the value of “foo”.

bctb calls the display libmy (libdis)passing to it the symbolic definition
returnedby Iibsym and the data pointerreturnedby Iibbdb.

Iibdis returns to bctb a formatted sting that includes the symbolic
definition and the fomnamxl value of “foo”.

- remms the string to Tcl which in turndisplays it to the user.

Other Tools

Many other tools at Cray Computer Corporation have been created or
enhanced using the libraries initially targetedfor Mb. These include:

m stb - A graphic symbol table browser.

n dasm - A symbolic disassembler.

■ aim - A hardwaresimulator used to debug operating system code.

● hohnes - A graphic Tcl environment.

■ nflow- A graphicpost processor for evaluating process flow and timing.

● vsm - Visual System Monitor used to moniror system operations and
individual processes.

■ symdiag - An internalsymbol table diagnostic.

■ va - Visual Administrator for system configuration.



Mb

Acknowlsdgrnorlts

The ●uthcxwishes to acknowledge the help of a numberof individuals at Cray
computer ~tion without whom Mb would still bc an idea on my white
bard. 7%csc inclwic Scott BoIw, Randy Mmish, IMrraghNagel, and Tom
Engcl.

A s@al thanksalso goes to John Oustcrhoutfrom the University of
California at Berkeley, the dcvelopm of Tel.

John Oustcrttout, ‘Tel: An Ermbcddablc Command Language,” l%occcdingsof
the Wmtcr lWO USENIX Conference, Washington, D.C., January 22-26,
1990. (1990A)

Infcmnation abmn TcwlCommand Language, along with the latest source code,
may be ob?.aincdfrom John (lust-out, University of California at Berkeley. A
mailing list exists which is devoted to Tcl questions. 10 pin. mail a request to
tcl-mquest@sprite. berkeley.edu and ask to be included or the distribution.

Copyrights

Watson, Wiggins, Doyle, Hohncs, stb, vsm, and Mb arc trademarksof Cray
computer Corporation.

OSF/Motif is a mdemadt of the Open Software Foundation, Inc,

OPEN LCN)K is a registered trademark of USL in the United States and other

cmmtrics.

Tad Command Language (Tcl) was developed by Ref. John Ousterhoutof the
University of California at Berkeley.

Author Informst[on

The author can be contacted by mail at Cray Computer Corporation, I I 10
Bayficld hve, Colorado Springs CO, MEHMor by e-mail a[
hhy@ cra-,t-ns .com.

.—. —— — .-— .-— .. .. . ...—-. -—.—. ... -,.- ..-. — ..—.. — . . .—-.—..— — .---. —...
s~mlo CfavCsmwtu QDtboll 9



The Los Alamos Debugger

Idb

Jeffrey S. Brown

Los Alamos National Laboratory
January 31,1992



Introduction:

Theabillty to debug and validate computer software Is an essenthd part of the

development process. This becomes increasingly difficult as the complexity of

algorithms and supercomputer hardware ‘ncrease, requlrlng more sophisticated

took TO addreas this need C Divldon embarked upon a project to write a ncw
debugger for use on Los Almnos supercomputem

The Los Ahmos Debugger (ldb) Is targeted to meetthe needs of large scale scicntlflc
code developem To that en~ Idb supports debugging computationally intcnslwc
fortran programs on production supercomputers, with minimal impact upon
performance, taking full advantage of advanced capabilities provided by the
UNICOS operating systemnmnlng on Cray Research hardware. To support
emerging technology, such as the ConnectIon Machine, Idb Is dcslgncd [o bc
portable to other supercomputer platforms.

Los Alanm has considerable experience ●nhancing and using debuggers on
supercomputers. In order to Ieveragu off this experience and provide a fam Illar uscr
Interface, Idb design philosophy and command syntax Is based upon the ddt
debugger which has been for many years the primary production debugger under
the CTSS operating system on Cray supercomputers. The migration from CTSS to
UIWCOS provided an opportunity to develop a debugger which would exploit unix
features and expand upon the ddt base by incorporating modern debugger
technology. An advantage of this approach Is that users mlgratlng [o UNICOS arc
immediately productive with Idb thereby accelerating the migration effort hy
provldlng a means to quickly Isolate bugs arising from port Ing codes. Adwnccd
debugger capabilities are Introduced Incrementally and In aIt upward compatible
way on topof this famlllar base.



Current Production Debugger:

Ldb 1s running in production on all Los Alarms Crays running UNICOS, and
includes the traditional debugger functionality of the CTSS debugger ddt, such SIS

the ability to control process execution by setting breakpoints in the user code, save
and restore capablllty, symbolic ac= to process variables, macro capability
including debugger variables and flow control of Idb commands, thc ability to
“patch” n pr~ and calculator style ●xpression evaluation. Ldb c~pands upon
this base In many a=

A significant enhancemcn~ is the ability to set more complex conditional
breakpoin~ whileretninlngthelowoverhead required to process the condition . A
code nmnlng under debugger control can be instnmentcd to stop al a code location
whenacondltlonIsmet. Under Idb, thiscondltlon Is processed In the user code by
re=routlng execution flow to ●valuate the condltlon during execution. Traditional
unix debuggers (dbx) evaluate the condition In the debugger which can cnusc a code
to run 20,000 ttrnes slower and efiectlvely ●llminatc the conditional br~akpoint
capability for computationally Intensive codes. The Idb implcmcntntion supports
much more complicatedconditions than Its predecessor, ddt.

A powerful new feature of Idb ls software watchpolnts. Watchpoints allow u user
to stop hls code when a particular condltlon Is met regardless of the code location.
This is an Improvement upon conditional breakpoints which cvalmtc the condition
only at a specific code Iocatlon, but rqulres more overhead to proass. The
watchpolnt capability can br of great use to the code dcvclopcr In Iocallng the roo[
cause of data corruption

For users with the necessary terminal hardware and softwmc, Mb provldcs u
graphlcnluser Interface us g X-windows which facllitutcs wurcc-lcwl dcl)ugging
and providesa naturallnt~ ‘aceto debugger capabllltlcs.

Idb hastheabllltytopipeformatteddatafrom theprocessunder dcl)uggcr control
to another unlx process.This opens the door for any type of d~llu unldysis to IKI
done during thedebugging session, suchasvlsuallutlon.

An Interestingnewcapabilitywhich Interfacestoldb Is uudi[ory dtilu mmlysis. TIN
user pipes data from the process being debugged to a workstu[hm with sound
capabilities which “plays back” the data. The user CM then “hwr” his duttl
rccognlzlngnnoma]lcsover ● Inrgc range of data. Vlsuullztilion Ilml trudilimml
debuggingarmlyslscanthenbcused to home-Inon theprohlcmurlw.

Vmmlon 2.0, scheduled for rclcnsc second quurtcr 1992, wIII Includr u ftrst (VII III

dcbugglngRupportfor shared memory purallcl codm.



Design Goals

Significant Features

Future Challenges



Design Goals

fortran

large-scale scientific codes

familiar look and feel

multi-level debugging

unobtrusive

minimize impact upon program performance

portable

flexible

facilitate migration from CTSS to UNICOS

all features available from “dumb” terminals

exploit unix features



Significant Features

output piping (visualization and sound)

software watchpoints

conditional breakpoints

execution tracing

multi-level debugging

formatted prints

macros

symbol table browsing

attaching to a running process

graphical user interface via x-windows



sholhal - /bls/tsh

b I

m

m

41L

a

TEST>S1W:341

cmm435&:

k=k+l
til) = 23.0
=11 9Mlm}
a(l) = o
‘r~(f il~-*O~)----- = 11111.0
●lR

IMI.2.3.4.5) = 12345.0
d(5.4.3.2.1) = k

dl:
JaA2) = 1Z3.45
call mh2(a.b.c.d.-l.d& 10. 10.5.6.7)

L 8
1

57 1~
57 57+s6
aXKnEz4445s.o 57
56 101
.nl 56

& &llXm407

K @ TEST()



# I

b:v Sklkml -/bin/csh

k I

130
Ixl
In
In
110
051
043
la

(M
15

tn7
M4
120
lm

k?
120
014

120

m
lm

CK5
ml

5

100
2 m 1111~1
3m~
032

101
444
2 al ot43Yxnm31

3 m o14~l
o m o14~l
001
1 al o1434HNunM
anx?x2317
o a o1434Unnml

-Iw
101

~162.o so
~163.o 51
cmXaz3X164. o 52
cumXc3M165.o S3
~lw.o m
51 51
S1 o
52 ~44453. o

~24
a

aaE2w
S1 8s1
n s4as4
Q ~lM.o
53 WaKmKilfi.o
Ml amnxzc6166. o
!m 51

Vimlalle

ml exe
Dt 10. 10.5.6.7) ma 1
I In-
K In-
PI real

K @ TEST()

uslxsmdo + Il@ ,

*Sud) + iq@ul
,

S5 1?TEST() + 3pa

~ ●lllmatim lerqph
..-— --—

Static 20024- 5 mxm
stat IC 244461b Zlm WJmk
stat Ic 24446LM 16
static 2444EKUJ Imm”d
6tatic 1-



T shelkgol - /bin/mh ‘-P 7 Novlz “

z%
23-

*2) = 15.0
a(1) = 15.0
a(2) = 15.0
*(-1) = -1
k=O
P = la(b)

amtl-
* 10 1=1. -1

a(l) = log(l.ml) + tall. mi)

umtirue
k=k+l
pa(l) = 23.0
=11 tilm)

.ne. 15 .ard. 1 le. 20. Z131
TEST> S&$lmEprinta13@int~ ‘a(M) =%f\n - I.a( i))
1[51> Ill+ Slo to ‘-fn-mtai:nm-
1[51> I.st

Fb-e*lmts (%MW.A Ly ~.%)

= S1O iamut. tlm-1: 1 .ge. 15 .a
—
:L (il’=~ tatlrm)
=~ (~tlsfled ex M?mals)
= -It (exit pint)
= ERWZIEU ( lnstn~atlm)
= I~Y (lmt~ tatlm)
= ~YZIEG ( Imtmmmtatlm)
= IE~Y ( lnat ~atlm)
= LJWm?WU ( lr6tl~ tatlm)
= ~Y ( lr6t~ tatlm)

~ at prcgra ctnmter: 401w =

st~ at ~ngra ccnmte.-: 401pc .

st~ at prqpn anmter: 401pz =

~F51> SIlst{prlntai}
prlntal =

printr ‘a(Sd)=X~- I. Al)

TT!iT> 1

. 1 le. 20) (llti to: pr

S1O e IE5T()

s1O I? TEST()

s10 @ TEST()

S . @ TEST( }

S1O 1? TEST( )

s1O I? TEST()

2El 1?TEST()

ntal: mn)



g’@QmvAmE!!
~lt-1 Januar calcul -sol /bin/c

Ell

r! 51

~ a\20
OOOO0245151b: a(1) to a(20) = .00000 -00

~d
killng user prowss . . .
r:l’’usr/~/jxpb/ldb% ldbl.2 test/test77ez.x

ldb ~ial 1.2
built: 01/30/92 at 10:27:09

at~ to absoluta file: /usr/tmp/ld52347..W
entering datmgti. . .
Procassi2xJ ~ in .ldbinit file . . .
TE~ sh “-~ tast”

ldb mrking directory ,. w: /usr/tmp/jxyb/ldb/
TEm list ~

p-a tast
par-w (-=100)
real a(100),pi
~}wa
data pi/3.14159265/

-[)
$1OA do 10 i=l,100

I@ clack V3

11 ThJJ413a

b —

xyragh

%-m x Graphv
i 1

100-- -----—---- - S&i-r

-.–.,------- . . .* –.

040

000 I

I I

-060- -- ~ ~~ - ~
,

4W- ---------- ;
,

,
-1 Of–—-—— —-;-—---–----- ;--------------:—— . -——-——-+-.

, , “
000 2000 40.00 60OJ Ww 10000 A

a(i) = sm(((2.O*pi)/100)*i)
$1OB 10 umtinna
9L all Snbo

stop

TZmmto91
user PS8 stop@ at program countar: 343pa = $1OB @ TE9T()

~ a\10
0LOO0245151b: a(1) = 6.279052~02 1.253332e-01 1.873813-01 2,486899*O1
00000245155b: a(5) = 3.0901i~Ol 3 681246-01 4.257793e-01 4.817537a-ol
00000245161b: Q(9) = 5.35826*O1

~~ ti~~ ii
5.8778530-01

TEm output I “ayraph”
mm do ii=l,ma.xl
do: print: -td %f\n” ii,a(ii)
do: ~
~ output tty
TEF> ~



9 Idbx

7 ‘.w ~

wbrout+me subz(a. b,c, d.mml, ch. fi. ~.~. ~.
commnlxw!p

:-

comwn/xxxnx\x. j - hwl[l
real a(lO. -l:n). b(j) .c(lOO). d(m. n,i ,k.1) .-__ ——.______‘
real auco(maxi)
character ch(5) w
Doincef (D .Da)

.)8[
SS

~

WB20 5 conti nue
9L c(l) . 2.0 @Q
IOL oa-l. O

c 1
print -.Da

tmuk?r

12L D . 1OC(C)
c print “pa .xlxJ

14L a(5.6) - 55.0
15L b(6) = 666.0 ~
16L C(7) - 777.0
17L autO(tiaxl) = c(7)
19L d6.l! - auto(maMl)/b(6)

tput mde r)

< ((7) - 5.0/a(l .-l)
c qoto 5 ~

21 L return
22 L end .na3

rl?store r)

@.U

m

.zl!!9

~ ~

SUB2J rol I 1
MI026145DC: “ ~136 7 000000:3

WB2J roll f
00W30023 ,h6 S7

WJ0261460a: 042 6 7 7 56
Al-)

1
9JB2> rol 1 I

EBlG261460b: 061 5 7 6 55 57-S6 LISep r-t . .

5LIB2 > rol 1 1
00026146Dc: 060 7 5 6 57 55-SE

SUB2> roll I
0fJG26146d: 1:6 7 00000024 00000024, A6 57

SUB2> rm to SUEZ
user process stoooefl at proarw comter: 26426pd - $5 @ SUB20

MB2~ rtr
00026426pd - list source “-lOO:-.lOO

S5 ● 5UB2C)
returns to 013CJ261!2CIC - EL @ SIII() - 6oa
rerurns to00025M)pa . 35L f? TEST() - 6pa
returm to l1002W54D~= $$T~T$() ● 33pd

4

.
Sf!B2~
WB2~ .



1.

(:r shellloel-/bin/tsh

\ I
~1 ShlhaOl - /bin/csh

LI 5h[k00i - /bhVcsh
[ -w] o.2mu m O.mlo+ 0,cn3% pml:i~Iw RlswIffi m mj 1
rx MI -p 395% te9t77ez. x

1* wwalm 1.2
hilt: 11/iO/91 at 16:53:04

at~ b mrmlrqij ~: @slCKfm!MJ
mterl~cMB.lg* . . .
P~ ~ In .lddnlt ~lle . . .
TEST) l:-~(pc)

10~ . wrlteo + @xi
TEST> II

14157f@ = XTIWX() + Z-
TEST> I !
lo- = Wrlteo + @lCl

TEST> I I
Ioq = Urlwo + @d

TEST) MqJ S5
TEST> M

u=~ s- at pmgra counter: ~ = ~ 1?TEST()
TEST> n.m

ux pI-IK~stqquid at ~rm csunter: 333@ = $S @ TEST()
TEST> k

K=~
TEST) M

u= ~-s 5tqqNd ● t pmtjpm cmntm: 33- = S @ TE5T()
TEST> k

K=~
TEST> M

~ ~ S- at fmxram camter: 333@ . S @ TEsT()
TEST} k

K=~
TEST) d kill
kllll~ -r pa, . . .
ri o



Future Directions

● port to other unix platforms

m Connection Machine support

m component of decoupled 1/0

● research into debugging parallel codes

● distributed debugging

● support for other languages

● support for other user interfaces

● debugging optimized code



The Auditorialization of A Running Code

Che@ L. Wampier and Robert S. Hotchki=
Los Akms Na_ Laboratory

Introduction

The putpose of this research is to broaden our approach to computer

programming by irmrpofating the use of scwnd as another avenue of feedback

from mactline to man. Mtil now, tiis feedback has generally taken the form of

written messages, usually cryp~, and often misleading. Code debugging has
traditionally been peflormed by stopping a running code at given breakpoints,

and inspecting the status of the variables on a line by line basis. While th:;

method has proven very useful, R is often difficult to localize subtte em’s in huge
codes. We propose #at sound can provide a natural medium for me offloading

of data from visual channels when needed, and can at times convey an
understanding of processes that cannot be easily gained through visualization.
Furthemre, the simultaneous perception of visual and auditory information can

have a synergistic effect of the brain’s ability to comprehend an event.
Our research has had the fdbwi~lg kmwdiate objectives:

1. to demonstrate, through simple and undemtandable
means, the viabilityof using sound as a medium for
feedback from a runningcode or from the data being
nmnlpulated in the code;

2. to develop basic sottware for translatingdata Into
sound;

3. to simultaneouslylay the foundationfor a more
extensive user interface in the supercornputing

1



environment, and a functimal interface intoa
supercomputingdebugger;

4. to investigate the relations between variousmusical
structuresand typicalcode structures;

5. to couple visual and auditorycommunicationsfrom
machine to man.

The Parameter of Sound

Because of the variety of parameters inherent {n sound, it can easily lend
itself to muttidimenshality and thus provides a good medium for data
interpretation. The most fundamental sound parameters that can be used as
precise variables are frequency, amplitude, and time. There are other variables
tit span the domain of sound, such as timbre or tone quality, reverberation,
brightness, etc. We have chosen to defer investigatingsome sound parameters,
such as reverberation or brightness,because of the ambiguity in the terminology
and our inabiiity to aurally distinguishthem with precision. There are an infinite
numtw of ways in which the sound parameters could be applied to the variables
of an event. The challenge for incorporating them into computer code that
approaches being flexible enough to accornodate this great variety is the logic
that must be written into the software.

software

Our purpose for developing the software involvedin this projectwas threefold:

1) to test the viabiiityof manipulatingthe fundamental
parameters of sound to represent data,

2) to provide groundworkfor a more extmsive, user-
interactive audio/visual systemfor the supercomputing
environment, and

3) to provide a useabie sound interface into a mainframe
debugger.

We have developed one basic set of sound software using a portable C
compiler. For this phase of the project, a Yamaha SY77 electronic synthesizer
and a NeH with a DSP were utilized for the actual sound synthesis. The NeXT
MusicKit software provided the conversion of sound-producing instructions into
MIDI format or into a format acceptable to the DSP. A small library of functions



have been developed to operate at execute time upon virtually arbitrary
collectionsof data. This enables one to perform operations on scientific data,
graphical data, or sound data through an interface as the code executes, This
‘evaluator is capabie of the normal mathematical library functions similar to a
scientificcalculator but allows a vector type (i.e., vector addition, multiplication,
summing a vector and scalar, etc.). It is capable of permitting the user to write
and invoke functions at execute time. It also ai~owsthe invocation of compiied
functions as desired. The evaluator is dictionary dtiven to provide a flexible
communication link between the user and itsetf for a specificationof the means
by which one intends to use the compiled primitive functions, Thus, sets of
numertcal data can either be generated within the program, or read in from
outside fries,manipulated by means of vector processes in a variety of ways, and
converted into sound accordingto the user’s specifications.

There will also bean optionto run the code in a mode which will map a single
set of data into frequency, setting default vaiues for all other sound parameters.
This mode will be used to provide quick sound ‘snapshots” of data being
produced by processes such as, for example, an executingdebugger.

We have discovered that audiblized data can create sounds that no man has
ever heard before and truiy excites even the non-musical mind. Humans have
been so accustomed to looking at graphs of functions that a great rtchness of
understandinghas been soreiyoverbooked.

Implementing Sound In Supercomputlng Environments

Supercomputers in the Cray XMP/YMP class of vector processors and
massively parallel processors, wbch as Thinking Machines inc. CM-2, are the
oniy current tynes of machines capabie of handiing the transmission rates
discussed above, if graphics and sonics are to cxcur simuitaneousiy, a
substantialengine is obviouslynecessary. Just to display and auralize data that
have been stored as flies requiresvery high-speed processingand disks capable
of reading data at rates of one gigabit per second or greater, It is possibie to
transfer informationat gigabaud rates from the memo~ of these machines, For
sound, it is possibie to compute sound files for many applications at the rates
needed for three-dimensional auralization. That ia, if one does not have the
availabilityof DSP processorsor musicsynthesizers,sound must be produced by
computing the 44,100 16.bit samples needed to feed to an amplifier just as a
compact disk does. We have developed software in the portabie C language that
is machine independent for a wide variety of machines. It does not port to the
CM-2 directly. We have writien code to compute the digitai sound data from
Fourior Series. This is a rather siow process on the workstation class of
machines and a much more rapidvector processon Crays. The algorithms have
beon designed so they wiii map to the CM-2’s SiMD (Single instruction Muitlpie
Data) architecture, At this early stage of development, we have not sought to
specialize our efforts to any specificmachine nor are we Iikeiy to. To maintain
extreme portabilityis and wiil continueto be an underlying basis of this research,



Thus, one code generates swnd fonMted data on any machine. It vectorizes
when compiied on a Cray thereby producing enormous speedups over
workstations. We are taking the same approach with regard to data that wiil be
sent to either DSPS or MiDl musicsynthesizers.

As a result of these approaches, we find that one inust rely cmthe speed of
supercomputersat times, but is aiso able to do most the development as weii as
testing on nearly my workstation.

Sound and Code Debugging

We believe that the uae of sound has important implications in code
debugging, In several instances, subtie errorsin the code written for this project,
aithough not obvious to the brain on paper or on screen, became immediately

evident when me results were audibiy played. Along these same lines, Nicoias
Metropolis, pioneer of modem comput!ng,reportsthat antennae connected to the
voitage iines of Maniac electronic computers used at the Los Alarnos Nationai
Laborato~ in the 1950’s provided acoustic feedback from the code as it was
running. Metropolis notes that each code produced a particular cadence, from
which an error or faiiure could be detected by a breakdown in the acoustic
cadence.[1] On one particularoccmlon, the exact locationof the error in the flow
diagram was pinpointed by noted mathematician Robert Richtmyer on the basis
of the sonic feedback. Current debuggers operate by allowing the user to stop
the code while it is running and then to inspect its status on a line by line basis.
in a very iarge code, this type of debugging can not oniy be tedious and time-
consuming, but can at times be misleadingin pointingto the reai problem source,
Giving a sound to a code as it is running can give a broader picture of the
processes as they occur, and thus could heip to Iocaiize subtie errors,

At Los Aiamos, sound capability has been implemented with a mainframe
code debugger. The current use of this sound in debugging is based on the
breakpoint concept. At the t’- .itional breakpoints, the contents of arrays can
either be sent to a graphics package or to the sound package to be given a
perceptual realization.

Our objective is to give a sound representationnot oniy of variabies, but aiso
of the actuai execution of any portion of the code upon demand ot the user. in
order to demonstrate the viabilityof this idea, a sound representationwas given
to an executing sort code. The sortingfunction, essentlaiiy a quicksortaigorithm,
calls itseif recursivelywith successivelysmaiier portions of the original array of
data. The level of recursionand the entry and exit times are recorded for each
caii to the sorting function. The times are then mapped into an audibie range,
and a tone assigned to each ievei, to be heid for the duration of that caii to the
function, in addition, the data, an array of integers, is mapped onto the pitches of
a string of notes (within a two octave range). The state of the data for each caii
to the sorting function is played upon ent~ into, and before exiting out of that
particular caii to the function. In this manner, it is possibie to hear the

4



progression of the code through tie various levels of recursion, and also to hear

the progressive effects of the algorithm on the data. This type of sonic feedback
can thus be used to represent the progression of the code itself or the
manipulationsbeing performed upon the data (or both). Sonic feedback can also
be used to portray the state and/or changes of state of memory. We speculate
that these uses of sound, as well as others yet unthoughtof, will provtde valuable
additions to the current arsenal of tools used to locate subtle and hard-to-find
‘bugs” In large codes.

Conclusion

As a result of our research to date, we predict that sound wIII be a viable
medium for feedback from the machine to man, that multidimensbnality can be
cleafiy delineated with sound and thus that sound has great potential for the
representationof multidimensionaldata, and that sound will provide an Important
additional tool for code debugging and for understanding the processes of a
running code. We would also conclude that further research is necessary
concerningthe use of sound in computerdebugging.

REFERENCES

[1]Nlcolas Metropolis, private communlcatlon,Los Alamos, N.M,, April 4, 1991.



THE
AUDITORIA LIZATION
OF
SCIENTIFIC
INFORMATION

Robert Hotchkiss, X-7
(Project Leader)

Cheryl Wampler, C-1 O
(University of N*w Mexico, Los Alarn as)

Greg Oakes, X-7
Michigan State University) - (Summer Student)

This project is being jointl conducted b the
i 7C-10 (User Services) and -7 (Computat onal

Physics) groups.

Los Alamos hlatio~al Laboratory



PURPOSE OF THIS PROJECT ?

. TO AUDIFY SCIENTIFIC INFORMATION

● TO GIVE MACHINES A VOICE TO COMMUNICATE

● TO SYNERGIZE THE AUDIO-VISUAL

● TO DEVELOP CODE FOR AUDIO-VISUALIZATION

● TO INCREASE THE BANDWIDTH TO THE BRAIN

● INCREASE UNDERSTANDING

(GmiGiG’
h ./ COMPUTATIONAL PHYSICS



.

DATA \
\ EVALUATOR

e-e
-

ARRAYS OF FREQUENCIES, AMPLITUDES, DURATIONS

KEY NUMBERSAND PITCH BENDS

L

I FILE I

ISERIAL PORT TO
MIDI I

DSP

F!g I Sound ~toductlon using ’’Evaluator” from DATA lnputtoso(l~fl



PARAMETERS OF SOUND

. Frequency

. Amplitude

● Timing

● Duration

8 Attack - Decay

● Timbre

. Reverberation

● Spatial Position

COMPUTATIONAL PHYSICS



Dynamic Memory Manaqer Applicationc

1 2 n- 1 n

❑ Busy ❑ Free ~ Non-Movable

P8r Utlonlng of a Memorg Pool

Sound con be used to studg the oparotlon of a m’ftmory
management sgstem. Bg mapping the speclng of the allocated
blocks Into o frequoncg (p Itch) range with the lowest and
highest pitches representing the boundaries of the pool, the
current status of the memor~ pool con be aurall~ scanned from
bottom to top. fi $POCIOI sound, such as a bell or a drum roll
can signal the location of free or non-m ouable spaces.

Block MoUement to Creete o larger Free Block

!50metlme#, saueral bu$g blocks ma~ he reallocated to new
memory locations to make room for the ellocetlon of a block
requlrlng e larger memory space. In the euent of e fellure In
the memor~ manager, It can proua dlfflcult to trace whet went
wrong, and to where the blocks haue been moued. The
reposltlonlng of these blocks Ins Ida, or outslcle, of the memory
pool con ba trecad with sound.



Code Debugging with Sound

LDB

Debugger

At Los Alamos, sound capability has been implemented
with a mainframe code debugger. At the traditional
breakpoints, the contents of arrays can be sent to
either a graphics package or to the sound package to be
given a perceptual realization.

Our objective is to give a sound representation not only

of static variables, but also of the actual execution of
any portion of the code upon demand of the user. This
representation could reveal the progression of the code
itself, or the manipulations being performed upon the
data (or both). Thus, it will be possible to hear an error
as it actually occurs in the executing code. We speculate
that this will be a valuable tool in locating subtle and
hard-to-find “bugs” in large codes.



VOIDWICWOIW( DATAM V, MWH, NT RIGHT,NT LEVEL
{

REGST’ERNTI, J;
DATA~ X, Y;
VOID SWAP() ;

++LEVEL ;
i= LEFr;
J=RH;
x = v~~/2 ;

Do{
WHILE(Vl< X&&l< R~) l++;
WHfLE(X<V~&&J>W )J--;

ql<=J){

SWAP(V, I, J);
l++ ; J-- ;

1
}WHLE(I<=J);

IF( LEIT < J ) QUICKSORT( V, ~, J, LEVEL ) ;
IF( I < RIGHT ) CUICKSOITl( V, 1,RIGHT, LEVEL ) ;
--LEVEL ;

)
A

ILm BhiiIiIm
COMPUTN-K)NAL IWYSICS



Sound Rendering of an Executing Code
A sound representation was given to an executing sort code. The sorting
function, essentially a quicksort algorithm, calls itself recursively with
successively smaller portions of the original array of data. The level of
recursion and the entry and exit times are recorded for each call to the
sorting function. The times are then mapped into an audible range, and a
tone assigned t~ each level, to be held for the duration of that call to the
function. h addition, the data, an array of integers, is mapped onto the
pitches of a string of notes (within a two octave range). The state of the data
for each call to the sorting function is played upon entry into, and before
exiting out of the function. In this manner, it is possible to hear the
progression of the code through the various levels of recursion, and also to
hear the progressive effects of the algorithm on the data.

LEVEL TIME

1 I I

5 I I HI—I
6 H H HH
7 I I



An Integrated Debugging, Analysis,
and Visualization Environment

for Large-Scale Multiprocessors

Alva L couch

David W. Kmmme
~fia Univer3iiy

Abtrmct

The tdx of debugging znd performuce Mzlyrns imve treditionzlly
ha mepu~tepursuits, one undertakenat the beginning of development
and the other viewed es A tuning phue alter bzsic algorithmic function
hzJ been verified. Omr experience indicsta, however, that armlynis znd
vkzlizstion tihniqua m esserrtizl for essunng ●ven besic function for
complex zlgonthm- on mzzeively parzllel mzchinee. A proper debugging
●nvironment for these muhinee ●houid have zcalabie Ievelnof unr inter-
action md data portrayal: it should aUoWthe wr to function on zny
level, from traditional -ingkproceemr quenee to globzl Visuzlizstion- of
perform~nce bawd on uzer-specified probe rquesta.

We ire currently implementing a prototype ●nvironment allowing in-
tegrated debugging, event trzce zne.lynio,znd real-time performance ti-
maiization for the NCUBE/2. Thic paper deecribm the detail- and mo
tivations behind the prototype deeign. Present ●nd propoed capabilities
zre dimmed, including ● graph-orien@d editr r for vimmlization ●nviron-
menls, the integration of debugging into this editor, znd how other data

murcee (such u ●vent trzcee)complement ●nd ●nhmce traditiorml de-
bugging techniqu~ in this ●nvironment. We AIZOdiwuze the future of the
method, a generalization of the dsta flowmethodbzzed upon ● graphical
query Imnguage for the ●xecution data viewed u a relational dstabue.

1 Introduction

Unlike moat of the other talko ●t the workshop, we consider the problem of
debugging progrmm on mwivel y parallel MIM D computers. A debugger for
these architecture fat- special problems. First, the ‘window-per-procezs’ Rp-
proach tuwd in nmet pmmllel debuggma fails completely, u the uw would have
to manipulate 1000windowu, One needsa histogram beside the source code just

1Thjc ic . “Eq rough ~~i Of ● paper to be ~Ubmiltd 10 the JOHd of Pu~lel Md
DisiribuM Computing --A izeue on vimmlkation, to be publishd In 1993, Commenlm
and nu~-tiow m WQlconu; pla- wnd them to cmchOm, Luho.~du. Apologiee in ~vmce
10 anyrm~whaoe uarh -u unfairly ieh unrefermcwl.

1



to mp~t the diatributiott of individual program counters. More important,

printing ● varkble or value u not ~bk iu ●he normal ~. One cannot
el%cieetly interpret the tvmlts of ‘print x’ when there are 10M X’C. Likewi~,
distributed arr~w ue difficult to print and read, both due to their size and the
variety of arrmy dlocationa ~.

In this paper, we attack theprobkm of printings vuiabk x, by exhibiting a
way to integrate viaualizatioo and debugging environments. UnIik~ debugging,

viaualiz-tiott hu dwaya dealt with reducing maaaive volumes of information
into s compaa, eauily viewabk form. Using visualization, we Auce the data
to graphical ●ttributu and render d] vdu- of x in a perusable form, Then, if
the viaudization ayxtem alloua deetive -rendering of sukts of dints, we can
freely nsvigate the data until we find the information we need.

We come to this probkm from the viaudization perspective. Our fimt tool,
Seembe[2], w- s tr~driven pcmt-mortem ex~ution analyzer. Event tracm
collected on all proc~rx ~ sorted into s global ●xecution order and exew-
ticn pammetera and ctata wereaitnulated from the trace. Thces were recorded
for communication ●vents by ●nveloping communication system cdk within data

recording veraiona. We later developed S-plex[3], s real-time version of Seecube
taking im data directly froms cutom operating syctemfor thepr~ing nodes.

Current work involva ●xtending S&plex to handle debugging u well m visual-
ization.

Othem have dao developed related visualization environmen~, though moat
are urned ●t comparing uchitecturea rather than debugging programs on a
single archmxture. Paragraph[6]ia s portable reimplementation of %cube
in X-windows, bad on ● timilar collection of ●vent trua using the P1CL[5]
portable communication library. Par~uph adda muty new displays to the
original suite provided by Seecube, but very few of the displays are scalable
and ncme allow interrogation of actual vduee from the display-. Pablo[ 10] is
● visualization system for any kind of event true, using a graph-b-d uacr

interfue inspired by thaL of~plrx, The interface UMX object binding semantics

and ix thue harder to use, but its portable ●vent format allows one to save the
~lu of filtration in a file for later reproc~ing. Pablo’a baae aaumption is
that vimmlization is a proc~ which can ignore the uemantia of the data being

otudied, Agdn, this is an amumptlon which works when one is comparing

architectur-, but not when one u trying to debug on ● particular one,
From thedebugging pempective, the mat interesting debugger i- the Prism

sy~m for the Gnaection m~hine. It allows● very limited though quite Incfui

form of visualization: ● htributed array can be perused slice by slice in WV.
eml dimenaionm.ather in textual form or m ● graphical rendition. In graphical
ride. ●ach pixel h colored ●ccording to the value of ● particular array cell, and
a puel can be queried for im due using ● mou~ graphical input device. Many
debuggere are now providing ink”faca to X windows renderem such u xgraph,
and several are now providing inkrfacm to the scientific data vioudization sy~

tern AVS. Thae mterfam are not just UMI- bdlm ●nd whistla: Lapolla[R] hM

2



developd ● nice set of tecbniqua for d=igning debugging aperimentn uxing
data vimmliz.ation. The mat intemting of th- ix the concept of injection, in
which the input dats to the algorithm is modified to cauu a particular pattern

in the output data vimmlization.
This paper is divided into five parts. The =ond put identifies eur integm-

tion strategy, the H ofs common dsts format. The third put discu~ how
to convtrt event traces into thix formst, and d-ribes s portsble, -If-defining
format for ccmvemion specifications J. The fourth put diu~ dettil~ of the
data flow vbualization cystem which usa tb;~ form-t. The fifth psrt discuasa
the d~iga of the next generation vimmlizstion oystem, which U- relational
dstsb- q~ry mmnti~ inxteul of dsta flow.

2 The integration problem

Integration of debugging, performsrtce umlysix, and performance visuslizmrion

k made dificult by the large number of subsystem th~t mum be combined.
We use the visualization system u the centrmlcore into which thae puts we

rnmged, unlike existing spproachu whichtulLR visualization system onto an
existing debugger u ut dterthought.

Ed msjor subsystem u mwaged from the vimmlization my-tern while hav-
ing ~ntiaily unchallenged control of some facet of execution monitoring. Thew
oubaystenw ultimately produce stre~ of dsts which the visualization system
filters ud rendem. At tht top level, the user ●ctivmemthe subsystems and mrm-
mgesthe otreams of data b~ using a grsphical ●ditor to specify interrelationships
between the aubyrteITM md displaym

One mrbsystem u ● conventional -rid debugger th~t SUOWSthe tmer to
interutively control the execution of ● pro~rmm, inurt bietipoints, ●nd to
probe for vslues. It dso provides MC- to the murce code text,

Another tubsyatem deda with evem logging in m ●xecuting program. The
uwr CM ●nable utd disable ●vent logging of vuious khdq snd thin aubsy-tem
fetch- the ruultmtt event trua for umein the restof the system or for mchiving
in filfs

A mimilu mhystem marmgu the real-time dsts collection instrumentation,
The ueer cut configure this instrumentation to monitor state information de-
wribing communication activity, procm stat-, the conten~ of progrem vwi-
●blm, and the like.

Yet mother suboymtemmanagm post mortem malyois O(event truu storwl
in fll-. Ith- control featura for -tepping forwmd snd backward ●t vmioun
speedn●nd for jumping to wbitrmry points in ● trace,

All of thesemdwystem Up Imgely independent W!the vinuslixation and renal.
yxir aoftwue, We are in the proca of developing specificationsfor the intwfacm

a- ~ll~. ~~u@ not pnmwat in my id. b im-~~ 10 ~t 4WIAOM of
-A& ●wnl tram fonmlo

3



bet- the componenw eo tlmt alterntte versions of thz mheystemzcan~}e
aubatituted for new computer archi~tura. In this way we hope to achieve s
wful degree of portability, To port the dtware to ● ditbent architecture,
compiler, opersting system, and instrumentation package,one would only need
to rewrite th- aubeyetemain accordancew.:h the interfacespecifications.

2.1 Levels of debugging

in our debugging practice, there are mntially three kinde of bugzs. Ltid huge
include anything which can be wzen to be inwrrett in the context of ● single
imlmted proc~, much u typing ●rrom, Imp limit problems, ur=y boundary
problems, or other algorithmic misunderatandinga. Thae bugs may typically
be studied by executing the progmn on ● small architecture of one or two ,pr~
-m using traditional metho&. Global bugz include ●ny incorrect uaumption
*Lout the relstionshipe be~wen proc-ra, muchu race condition and dead-
locba. These bugz me ty: .Ily found by utilizing hn ●vent trace, ●ither through
direct peruml or an ‘insL,.ilt replay’ interface for removing nondeterminism[9].
PcrJormance bug- include any incorrect prediction about the efllciency of* cor-

rectly functioning progrnm. Tbae bugs are typically studied through profiling,
though for meuively parallel machinea vimmlizmtion is usually nerewhry to ren-
der an animated repraentmion of execution. Moat performance visualization
sycteme utilize an event true, and cm be considered u highrr-]evel vmaions of
the trac~driven debugging ueed for rua and deadlocks.

Our goal it to unify the levels, by daigning s data rc:~rwentation common
to all Ieveh and providing ●n environment in whwh that repraentation can be
freely mmipulmted and rendered, Any common re,premmttationmust be com-
plex enough to ●mbody the dat~ from ●ach murce, while being simple enough
to render mid undcrttsnd eesily. We ch~ the statr vector u the common
repraentalion. Obvioudy, variable vslr.m and real-time statistia may be inter.

preted u rotate variablu. Evente are converted to otate variabia by analyzing
the effectz of euh ●vent on global otate, ao thst th~ effect of one event may

be the change in many state varimda. For example, th~ occurrenceof the orw
●vent ‘1flbytc meuage received on proc~r 9 from procmr 13’ miflht change
th~ v~lua of the following mate vmiahkm:

1, number of rnwqa cent from 9.

2. total byt= eenl by 9.



4. number of ~gam received on 13.

5. total byta receivml on 13.

6. aiaeof l-t ~e to 13.

~, the state of ●ub chaunel connecting 9 ●nd 13.

8. number of events procd (an artificial clock).

9. and teverai other stat= more dependent on the cpeciflc archikture.

Obviously, an event ia completely repraented in the mt-te spaceonly if enough
atatu vuiablea ●re deiined to completely ●ncode the event’s contents,

Thu ●ncoding hu advmntmgea and diaadvantagu. An ●vent it hard to render,
becmme it inherently h~ no duration in time. Showing an ●vent in an mimation
u inherently misleading, as the rendered representation must have mduration
to be perceived, while the event doa nok. st#e information is much easier to
render rmturally, u ● atmte inherently h- s duration. ‘i’hi- makee time Iin=
and mapehom eaaier to construct and interpret. However, the choiceof etatea
certainly tiecta how much information is gleaned from tht hce, and a bad
choicecnn lead to ● state vector containing the wrong information. It may aleo
be importsnt for the umr to see the real trace unmodified. This is ●-y, but
neverthelaa increases the complexity of the ●nalynio tool u well aa the number

of visual formala the user must learn.

2.2 A ‘note’ on terminology

Any instrumentation is selective, and the data mmilable to the ueer is a smnll
mbaet of the actusl d~t~ available. We find it nec-ary to distinguish between
the ideal data embodied in the ●xecution and th~ data actually available to the
ueer through a tool. Ideal events occurring within the computer are recorded am

notes, The analogy =ma to refer to the common debugging pmctice of taking
not- on paper u one observ= ●xecution, though the real simile is musical: a
m ia of rel~ted ●vents is s cAord, Likewise, ideal sfahsftcs embody all poeaib!?
sta:e il’%mation we could peruse ●t ● given point in time, such u memory
contents, throughput, progrsm counter Iocstiona,●nd the like. When we record
● otatiotic, we refer to it u ● ‘tally’, Thin word is really most rel~ted to the wIiy

w umlyze the note trace (our vemion of the ‘event trbce’): M we encountrr
events w~ ‘tally’ th~ changm in ●ll it~tm cmuwd by ●nch event. This terminology
may wem like s h-ir-cplitting trivi~lity, but the Appropriate choice of wordn
●llowa ua to convme in conmt~ ~ncl wdl.ddlncd terms, facilitating the dmign
and construction of othwwiae virtually inconceivabledala manipulalionn,



3 Converting notes to tallies

Amdebugger proba aod real-time statistia are naturally interpretable za tallia,
tlae red problem with integration u to expm nok trace data in tally form.
Thu u aimplitled by realizing that tdlia are naturally organized as vectom,
where ead vecbr conziata of talli- of a particular type, and the index ~t of
the vector rangea over all locationo within the architecture where that type of
tally ia meaningful. The problem u to specify how k compute theu vectors
from the note trace.

Thic problem iz made more difficult by the currentinterut in standardizing
event tr=. The beneflti of staadudization are obvious, M aadynis tools
may then be reused on trac~ from many dii%rent architecture. However,
standardization haz ~rioua problems. First, one cumot adopt a etandard which
keeps raarci~era from defining new nota and note semantiti; uny standnrd
muot be extensible u new idesa me developed. Second, one cannot standardize
the aemmoticaof the no-, u it u currentlyimpoaaiblefor =archera to agree
on the aemantim of ●ven the mozt simple no-. A “m-age tranamiaaion”
meann mmething quite different on a SIMD m~hine than on ● MIMD orie,

The main difficulty reaultr from the dioparity between the way tracu are
recorded and the way they ue analyzed. Wherees one can reammbly only
record local system notes literally M they occur, one would rsther analyze the
effect of nota upon the tallia representing the global state of the parallel com-
pu~er. For ●xample, the Istency in sending a large m-ge between proc~

on different procmra is best determined by subtracting the times of the notes
corresponding to iti rending and ite receipt, By note semantica, we mean a
cyotem for translating from the vduee appearing in fields of the nok to a zet
of vdu~ (tdliar) thal cre the basio for the sndyais,

It u th= eemantica thnt are dificult to generalize, leading many imple-
mentors to code th~ir note semantics into ~ specialized trace interpreter that is
ilttegrd to the analysis LOOI[2,6], We view the ●nmlyeio process za coneimting

flint of the conversion of information in the notes into appropriate tally vdueo,
followed by the application of the udysis tool to the vectors of tdliea thus
generated.

S.1 Current standards

To date, two ●pproacheo to standardization srr prwalent. The tlrut approach,
proposed by Fbed[ 10], normdizea note lram formatn so that ●xh note simply
mr~ the value of one or more system ntatimtica The format i~ -If-defining:
a header to the note trace defhm the record formnl ~nd prmento a mapping
between note fields and ASCII nmnu which defln~ field zemmnticato the user.
There u no srmnntic content to the fleid imelf; it junt specifhm● nsmed mnnh~r
which the u~r in left to interpret zmrmntically, To convert ~ trm~ to thin

formmt, mm rnpplims flltcr that ulilizm not~ swn~ntirs to produce ● nrmmitirw



f= trace. While this providu a nice interface to analysis tools (which merely
must accumu]hk fields), the formst is actually quite far removed from the raw

note trace recorded in the machine. In etTect, wmantic ●ndyaie ha been done
already, by traaaforming the raw note trace into this form.

A wcond ●pproach[12] b to provide a packagedinkrpreter for the not: trace,
including ac~ functiono for d] the sthtisti- the interpreter knows how to
compute. Thix●pproach agun *voids the iuue of note mmantia, by providing a
prepared filter which ~tidly performs the came function aa Fkd’o trarhtor
to normal form. Event aemantia are interpreted internally, and the resulti are
mreral uraym of d-tq mmantiafree except for the namea with which they are
labeled.

9.2 Our approach

We have dev~!oped B working prototype of an dtern~tive spptoach, in which
note semantia me coded into ● declaration file uting * relational query ]an-
guage baaed on the work of Snodgraw[l 1]. The declarations are compiled into

● progrun for a universal trace interpreter, which is r~ponsible for the final
trarmlstion from true to tallia. There i- no need for special ace- function-

in the utalyzer: it need only understand the data format produced by the uni-
versal interpreter. Thin ntrategy oubsumee the function of the interpreted for
the trace formsh we now uee, and we have yet to find a trace format whoee
eemantiu are not reprexmtable using it. We propcme thin method M a poesible

stttndard for defining the aemantica of note tracrm,

Compilation of the declarations to an internal form ouitable for interpr-
tation io ucomplished by a simple recursive-d-cent pamer/translator for the
declaration language. Some care must be taken in the compiler to ensure that
the program it produca for the interpreter ia reasonably efficient, To illuntrntr
the imuee and methodn, let IM tsk? mme examplm from s aet of declmaticmn
that dracribe mainly ●pplication-level notm for a pmrdlcl progrnm for alpha-lmm

warch[3],

3.3 Examples

Here is s d of declarstiom for a tally encoding the concept of the stnte of an
●lgorithm. This reflecte the facl thmt the computation procwdn into diffmcnt
phaam ●t diflrrent timen (rromewhat unprwlictahly and uynchrormunly) on dif-

ferent procmmwn, The enurnwstion of lhe doxm or IMJdilhr~nt nlgorithm ntmtrw,

ee well an th~ d~clarationrr hcrihing how to inh tlw OIRM from the note dmtm

are provided by the user who wrot~ tlw ●pplicatirm. Tlw drwl~r~tionn drmcrilw
“Attributi” which are field- of noten, “Varidrlm” for refmring to vnlurn within
d~clarationa, and “Tdlim” which m th~ vdum to Iw crmlpulml.

Attrihulc code TypdShmt) Nhm@ (“Not- rod~” ) F~trh(huh,2);
Att~ihul~ nml~id l’yp~ (Short) Nww f“nd~” ) t’~tch(huh,l)~;

i



Varisble mmType (l~t) ;
Tally AlgJtate Type(Pernade) Name(”Algorithm state”) Initial (IDLE) ;
WhereEv ( code= -SATART, nn=nodeid ) W AlgJt@nn] = START ;

The firet two ha declare two fields of nota. The “code” field aervea M
a primary key telling the note’- type, while the %odeid” field indicatu the
pro~r on which the note originated. “Fetch(buh,n)” dacriba how to fetch
s field from a nob, in thie C= by fetching an unsigned halfword stored in
bigendi~ byte order. There is a large, expandable d of muchfetch-functione,
including mme that handle fields wh- nize and location within a note ●e not
constant, u with He*th’a[5] or Reed‘o[1O]formhte. The third line dacribu a
vari~ble und in following lin~ to record the numerical processor identifier of

the procar on which the note occurred. The fourth line defin- the tally M
an array of valuea, one for each procewx in the parallel computer. The laet
line ia one of many d-cribing the dependence of this tally on ● note having
a parti.-ular code field. (“IDLE,”“START,”and “S5TART” are mnemonice
for literal valuee.) This line containn simple expmaionn involving auignment
mid relational operators; the syntu supports more complex expr~ion~ using
● C-like eyntax,

Thecompiler’o job in this caaeis to digat the first four Iinee,p=ing declar-
●tive information along to the ●nalyzm, ●nd to convert the hat line into a
procedure that determin- whether a given note alTects the tally, and performs
the update if it does. Thecompiler conntrucm one ouch procedure for each
“When” :tatement, by viewing the etatement u ●n exprueion to be evaluated,

lf ●valuation fails, then the note does not affect the given tally; if it oucceedo,
the tally in updated via an aaeignmentmtatem~nt,

The input to the interpreter ima eel of such procedure, which are ●valu~tml

wring an unbounded array of “registers.” Each attribute fetched from a note iu
pul in ● rledicat~d one of th= re~intmr. Tlw compiler avoida refctching nny

field from n note by remembering wh~t regi-ter it haa b-n fetched into onrr it

haa bmn refermrc~din mme ●xpreaeion. An eaaignmentof a value to a vnrinblc
is handled at compile-time by binding th~ variable to the register in which tlw
value occurs. Bindinge of vmiablee to rcginternepan one “Whm” ntntement,
while bindingn of attribute to regintmn qmn all the exprmeions.

A olighlly mor~ complicat~d example illuotmten the uneof groups of nnten,
The following rbclarations ddln~ ● tally thnt rmmla tlw cumuldiv~ Apd
time bctweml th ●ppmranw of notm of two particular codm on mprormnt}r,

Attdtmtn tim~ Typ(lnt) Nam~(”timr”) Frtrh(hw,4);
VaridA@ t I TypF (Int) ; Variahlr 1’J‘1’yp~ (Inl) ;
Tatly Tim~weillnX ‘ryp~ ( Pewnde) Nam~(” Tim~ waitinm for workwn” );
Whpn Ev ( COdFW-l.ll E’14[JHN, nn-nod~id, t2-\im#)
After Ev ( CWIC--S. WAI’1’ , nrmleid--nn, tI-lImr )
.M Tim~wuling[nn] +- 12 I I

H



Until Ev ( code--S_EXPAND, nodeid=-nn ) ;

The “After” ntattment tells the interpreter to ecan backwmd through the
notu until it finds one that allows●uecwful ●vdu~~tion, The “Until” statement
blls the interpreter when it may azeume the eearch hes failed and abort the
eearch pr~. Without such n bound, if s daired note ix miming for any
memn, then the eaucb will proceed through the entire trace before failing.

4 The visualization system

kigning ● vimmlization u-r interface for ex~ution data ix considerably more
challenging tlmn d-igning ● scientific d~ta vioudization syotemi For one thing,

the data format for scientific visualization data is fairly well tied: scalar and

vector fields in 2-space and %space. Moat dala ia continuous in nsture and one

can meaningfully interpolate between adjamlt meuuremente. Also, the data
valuee n~ded to render each point are quite unimportant after the rendering

occurs. Rendering in the only goal, and global appearance i~ the only deliverable.
By contrast, execution data hee many problems, Execution tdlim are in-

dexed over discrete ee~ by nature. A particular tally may be stored in an array
indexed by eeveral ado, relating b locations not in space but in the computer’s
architecture. For example, the tally representing memory location valuex might
be indexed by proceemr number, proceaunumber, segment number, snd offset
within the wgment. Index =ta may change dynamically during execution, ●,g.,
proc~ can be initiated mnd terminated. There is often no ewily interpreted
notion of ‘neighboring value’, ●nd interpolation in dmoet never ● meaningful
opera~ion’, Tally data hm very high dimension, partly due to the way tdlim
are derived from notea,so that comparison of multiple dioplayo is typically morr
important thnn obtaining B single view. Moat important, the individual data
value are indeed important ●m after rendering in done, The global view only
mv- to lead the umr to particular subeete of ●rrant valuea, which must then
be interpreted ea ● bug in the program.

Thin need to work hsckward from the vimmlizntion to the original data, from
that drntato ttw ●vent trmce,and from the event trnce to the bug, in unique to
d~bugging, Much work cmlocating hugn from the event trace hes b=n dorw in
1’1’11[l]; the ~ppronch is cdlerl ‘flowback ●ndynin’. Wc generalize dm problem
by ●dding ● vinunl compmmnl, I prder the term ‘rmmnl hackchaininfl’, from

th~ th~ry of progrmn corrrrtnmx. Bmckchaininnis the proc~ of using Iogird



predicata ●bout the ●nd of execution of ● procedure to infer predicate about
each line of the execution. In our caee, the predicate are the Walu- of talliee,
and the backchaining firet determines wlmt evente affected th- talliea, then
(indirectly) what caumd the tallia to beconw undesirable.

4.1 A good debugger visualization system

Th- commentmmotivate the following diecumion of an ideal visualization sys-
tem for debugging. Firet, there must be ● direct and eesily undemtcmd cor-
mpon?znce between locations on each display and the individual data valuea
which were ueed to create it. For example, u in Prinm, we must be able to
map each pixel in a tw~dimenmional map of army contente back to the array
element which determined ite color. But more important, there must be a map

from summary data to the valuee af%cting the summary.

Suppoee processor state in coded u green for running and red for idle. Sup
p- the current ntate distribution u rendered M two Iinea, one green and one

red, where the relative length of the lina indicatee the balance between running

and idle procmom. Thedimplayh thug n frequency summary, where the length
of each line is proportional to tbe frequency with which pro~m are in the
line’s category. Sometimee each pixel of a line corresponds with one proceeeor
in the line’s category. So selecting this pixel is ●quivalent with eelecting the
procmactrfor further study. More often, however, one pixel i~ pr~nt becauae
many proceaaoraare in the category. Selecting a pixel therefore nlecta a subset
of processors, hnd selectingzeveral pixels (or ● line segment) eelects the union

of the oubmta for ●ach pixel. The rrlapping between pixels ●nd processors is

not uniquely determined, mnd can be constructed in any way, M long m come
mapping i- available, In our caae it is induced by an underlying ordering of

proceuom, which cm be modified u~ing a sorting filter.

Second, ●ll displays provided ohould be inherently ecalablc. The user should
not be forced to learn to interpret displays which will not be of une in interpreting

maaeively parallel executiorm Many inherently tcalable displays already exirtt
which can b? applied to understand nmall scaleexecuticmawith the same facility
u the unecalahle di-playm currently in u-,

Third, there nhould be ●n eeey way to construct multiple dinpi~yn of the
same dat~ Since the data is inherently many-dimensional, the user will often
be making comparimna of similar data, One way to accomplish thin imto fix the
mapping from value to ~raphicd ●tttibtilm for ●ll lime, This is not d%irdl~,
u we do not y~t know the mat efficient mnppingn, Thus an ideal syotem allowrt
multiplr mmppinga,each of which can be umd on wvwal talli-, each of which
u dirqhyed uning th~ osme mapping in aweral dithent ways.

Fourth, three nhould be an eMy way to limit diwumion to ● np~ciflmlIIUINWL
of th~ whrk data act, rwliaplaying i~ in a different way. If only pmt of n dinplmy
u in ●ror, it mhould he p-ible to ●innle out thnt part and redisplay it nlmw
with mor~ d~mil, one Aould b? ●hl~ to ‘wlmt and RCOpF”a dinplny tn zoom in

Io



on detail, aa well u to ‘expand snd illuminate’data by showing finer detail.

4.2 The data flow approach

We ●pproach the problem of providing the ideal visualization tyetem by utilizing

n dstt flow model of analysia, similar to that u~d in the scientific visualization
packageAVS and the Pablo[lO] event trace viewer. The dsta that 90WSconoiou
of vector of tallia, indexed by some (pcamibly cmtaian product) index wt.
The data flow graph describing the whole visualization environment in a directed
acyclic graph wh- nods are data murcu, filters, and displays.

There ue several kind- of aourc-, all producing mimilardat=. A source can
prmiu= a tally from a debugger variable probe, an event trace, or a real-time
data collection subnyatem. One eourceCUDprovide several kinds of talli-, each
an independent output. Euh kind of source hw i~ own control window with
which one cm control what data is shown.An instance of the debugger is the
control srindow for the va:%’;!c p~obe, while the event trace window controls
the current time being viewed A the real-time window *IIOWOspecification of
the real-time data to 5e cc!lected.

Filters in our eyo!~m differ from the in Pablo. A filter is often not a dsta
transformation, but F augmen:alion: extrs data is added to ●ach ●lement of
the input tally. Added data Includ= graphical ~ttributea (inch aa color, shape,
●nd texture), selection informatirm determining a mubaetof dats of interat, and
ordering information determinin~ the order in which d~ta is praented on an
ucis of ~ display.

The concept of a diq lay in not too well distinguished from that of a filter.
Many filtem have aaaociated displayq, Graphical ●ttribute filters, for example,

allow the u-r to paint ~1aphical Bttributen directly onto data dieplaye created
by the filter. A display in h special cow of a filter, rather than the other wny
●round.

4.3 Icons and instances

Reusability of altribute mapn (and other filtration schemes) io accornpliehed
using ●n instance scheme. Each filtm car act independently on several rretrrof
input vectoru providing ●n output tm’ x I’or each act,Each output vector is
produced by copying tally dkta verbbtim mom one of the input vectom while
computing ●ugmenting ●t~ribut v baMd on the vslum of all vecturs, By apply-
ing wsveral inotanmr of a filter to diffc.ent data strenm-, the user can reuw a
complicated filter configuration without copying or redefining it. Changm to
the filter’r rretup tiecl ●ll data mtrenm ~hi-h flow lhruugh it nimultaneourrly.

An example icon iu nhown in Figure 1, Euh icon haman identifying glyph,
nhnwn in the top nquare. Below thi~ three in a vertical bnr containing all
instanw. Each inntance conuintmof WVCFA inputn and a ningle output, wtwrr
lh~ fan-in on inpu~ in 1,whil~ ~ach out\Jul ha- infinite fmn-out,

II



Figure 1: An icon with -o instan- and three inpute for each.

Icons are ‘pluml together’intoB directed scyclic graph, u in Figure 2.
Here two inputs from a real-time collection mubeystem are mapped to graphical
sttributca, sorkd by value, md shown on ● couple of LED-styie displays,

4.4 Filters

There we ~veral kinds of filtern we use to ~ugment d~ta before display. A
imn+min~ filter appliu ● mathematical function to get new dats !rom old.

Exsmplee me logarithm, bit field extraction, integration (running sum) and
differentiation (running difference]. An augmenting filter adds sttributee to
data, such u color, texture, mrting order, etc. A selectl wefilter selects a nubset

of its input. This isredlyanotherkindofsugmen~ingfflter, which ulds a
mlection bit to each datum d-ribing whether It is included in the mbpet. An
aggrqoting filter groupe data into groupE, typically by summiug, Currently we
have only one kind of ●ggregative filter, which folds dnt~ indexed by hypercube
procasor nunmer onto s subcube.

A key remark u thst ●ggregating is to be ●voided if d d possible. An
aggregst ing filkr in the chin is R many-t-one mapping. In backchaining to
tbe orighl dsta, one thut hss s one-t~many map in the reverse direction.
Thinmesns that the only W*Y the system can r-pond to s requat for more
informdion on an ●ggregata u to present ... aubwt of valua rather than ● sir,gle
one. The only way to get specific information cm UI ●ggreg~te u to back up

in the chin before the aggreg~tion operation and r~render the input to the
aggtegstor in ● new wsy.

4.s Diaplayn

Duplhyo take inputi which have already been ●grnented by gmphicul informa-
tion, ud pick and ch~ within tba~ information to come up with s rendering

12



!

Figure 2: A sample data flow visualization scheme.

of thedata. Each display has the right to utilize or ignore augmentations na it
ple~: one dizplay may utilize a textural augmentation while another ignores
it.

The requirement that displays be scalable zeverely limits the kindz of diuiplays
we csn construct, We must rely instead upon zooming to ~ detail. The only
zcalable dispif,yo are acrollsble text, pixel maps, scatterploh, and backchainable
mmunariu.

A pixel map is simply a display where each dstum controls the color, bright-
nw, or texture of B single pixel in B two dimensional array. The pixel in qu-tion

CM be resealed for easy viewing; ● dizplay pixel may be 9 zcreen pixels wide.
Selecting a group of pixels allow~ them to be redisplayed in ● dilferent way.

A zc-tterplot u particularly uwful becauae it is inherently scalable. A on-
dimenoional Zcstterplot diapiays valuez m huh marks on a number line, while
● twmdirnmmional scatterplot renderz pun of VRIUUu points in s Csrtaian
coordinate system. Scatterplotz provide ● global navigating point from which
to peruse the data. If one u interated in mwimal vmluea,one selectsthem
on the zmtterplot and redinplaym the output of the scatterplot to zee them.
Changing the selected region ●utomatically changes the subsequent duplay of
~lected items.

Summaria are only prnvided if there is B well-defined notion of which data
afbct ●ach put of the summary image. For exunple, in A bar chart ohowing
frequencies of values, Aecting a bu oelecm all vahm counted u within the



bar’s category. Then the vdua can be displayed oubeequently.

4.6 Usage

The UMr of our myatem haa two baaic operation at band. One can select and
zoom in on particular data of inter-t from ● global context, or augment and

illuminate data by adding information. A typical uae is to understand 1024
valu~ of ~ variable X, obtained from the debugger. Suppae that x io a phaee

counter for your algorithm, and that you expect dl valua to be 2. The fimt
action will be to ecatterplot x in one dimension. Supp- all valu- ue not 2,
m that several other baah marks appeu on the acatterplot. Tbe second action
ix to wdect the other hash marka for further analysis. Then the output of the
seatterplot ia connected to a kxtual display one can peruse, ohowing only the
errant valu~. But suppose this display is still too hard to undemtand. Cne cmi
map the data instead into colom and show the rrmults on a pixel map, to get an
idea of how many proceaeora there ue in each incorrect phase. One can .+1 n
select subcetaof the pixel map and repeat the proceaa.

4.7 A prototype

As a kst case, we are implementing a debugging and visualization environment
for the NCUBE/2. This prototype u- operating system instrumentation [7]
to provide an event trace and real-time data for each execution. Compile~
imtrumentation is not used. The NCUBE/2 was chosen for this becaueethere
are now delivered systems with 1024 proceamra: the mtuimum configuration is

8192. While our prototype is aimed at one specific architecture, our real goal
is to develop paradigma of uw and debugging strategies which are applicable to

any muively parallel MIMD or SIMD architecture.
The current prototype has the data flow visualization system in place, with

data aourceefor both event traca and red-time statistic. We are working now

upon the integration of our debugger “tdb” [4] into the visualization system,

Currently the visualization myotem oupports only ‘augment and illuminate’ style
opermtiono; we expect aeon b have selection and zooming working properly,

4.8 Implementation detaila

It is important, specially when deding with real-time visualization, to make

one’s viaudization system M efllcient M pmaible, This is done in our system
by using ● fragmented vector repr~ntation of dats with acceu counts. Each
tally is a dyrmmicdly allocated ●rray of data, where each cell contairmbwth the
current and previous values of ● datum for optimal display updating, aa well aa
a pointer into ● linked ‘change list’ of array cells which have changed in value
since the previoun display update. The array is p-d from filter to filter hy
reference, ●nd an acc~ count is kept for each filt~r which referencesthe mray.

14



Augmentation data in kept in a aeria of arraymwith parallel otructure to the
tally array, each dao paawd by referencewith acc~ counted. Augmentation

arraya are created on demand by filters, and are controlled and updated only
by the filter which created them. If a filter overridea an augmentation, that
augmentation ia still available before the filter; if one maps colom twke, then

there is one color map before the mcond map filter and another afterward.

5 Beyond data flow

Unfortunately, our work haa shown not only the benefits of data flow but also ita
Iimitationa. The main limitation ie the baw data type: the tally vector. Defining
index wu ia diflicull. especially since the index *to can change dynamically.
Further, the model completely excludes direct manipulation of note dat~ except
in the tally projection of that data. A different approach is needed to completely

integrate all forma of information into a complete whole.
The answer arena ta be a simple generalization of the data flow model. For

simplicity, consider the apace of all tally valuea au a dat sbase relation:

tally (name, location, valua)

Then we can replace the vector of talliea of ‘meaaag- written’ with a relational
predicate

tally(n-o=~’”=anmgcfi writtsn”, location, walua)

which in true when the name of the tally io ‘mesaaga written’, the tally haa
● concept of location, and the tally has a value. The predicate can replace
tbe vectnr. provided there ia a way to generate the relation from the predicate,
Augmentation of a vector is achieved by augmenting the relation, ao that a color
map filter transform the relation Into a new one

tally 2(nama, location,

with amociated predicate

tdly2(nwo==’’m* 0aag-a

mlu~, color)

mrittcn’”, location, ralu9, color)

meaning that the =ond vemion of the tally haa the same name, a defined
location and value, and in addition a color, Under thin aetof romantics, all data
is globally available, relational predicate are the medium of communication

between filters, and filtem modify the global relational space for new relatiomr,
pauing thin on to the next filter by modifying the query predicate appropriately.
In other word-, the appearance of the data flow graph remains the same, but

the aemantim are th- ofs graphical query language.

The ~mantics of the reviml graphical intmface ●re quite simple. In the olti
q~atem, an ●rrow from filter A to filter B ~rted that dnta flown from A to B,

15



k the H ayatem, the same arrowu interpreted u ‘A acopa B’. That is, the
oatput of A ms aet of predicata which direct B to consider s puticular sukt
d the dsts, and, more importantly, to ignore the rut.

This change in mrmotiea haaimport-t runificationa. Several inputs cao be
metingfully fd into ● single input port; the rauh ia the predieste which is the
Iogicd coajunctioa of the input predicsta. For txunple, if one prtdicste aaya
thaldlep ~r number must be between Oand 7, and another predicmte -ya
thatthe puameter of interest ia ‘~a written’, then the conjunction ix the
tally mlatioa Coatainirlg ‘meuage, written’ for procrnra O to 7. Thix meano
that ~ of ● single tally defiition can he provided from different filters, none
of which haa s cumplete picture of the definition. Also, the gmphicd repreaen-
wion of the viaualizmion environment no longer directly corresponds with toe

actual p~ ng of data taking place; it u only msemantic representation of
the symem,not ● dacription of the underlying dsta manipulation.

s.1 Our relational model

We w ructum our dstabaae model to be ●asily umble in this context. Fimt,

we insure that a relstion field with s given name always hu the same wmantic

interp~tation, i.e., the:e u ● well-defined mapping from ● field’s name to what
i~ due means, and hence to what it ix●ppropriate to do with the nlue in that
tleld, ~ond, we view ●uh tuple in a tally relation u ● tuple in ● single global

relatioa, where unmentioned fields in a tuple ue -umed to be left blank. }Ve
thus cambine tupl- with dhimil~ structure into ● unified relational context.
Far cxampk, the relations:

pro~am.countar( procoaaor, procoss, of faot )

nsaagoa. sant (tally, t--, proco-oro ralno)

are tranaford into Dukta of the same relation

where the MA d the whole Aatlon are

tuplo(r.1 at ioa, procoaaor, proc~oa, oifs-~.
tdl~, tire, aamo, ral!ao)

ud t Is ue left blank when not nwanlngful In conwxt Since w? ●r~ d~allng
with lgl~ globu relation, we n-d not mention It In pr~dlcatm To MIML all
tupla ●rring b progrun countem. an ●ppropriate pndlca!e IS

r~:at ionm~”progran coaatorn

It!



Forourpurpaa, we need pred.icata for equality and mernbemhip in a set.
Thie databue orguiration b for ●- of specification, not ease of muipu-

Istion. Internal rep~ntstion will differ. In fact, many relations will not be

stord u d, but simply queried from the computer uchitecture on demand.

5.2 The global relation space

For p~ of illustration, let ue define a oimple global relation in terms of ih
component relstione. Thie b M itttentiormlly ovemimplifwd model, constructed
only to illustrate s basic daign point.

1.

2.

3.

4.

5.

6

tupldrdatiom==-uow ,
aota ,tim ,procomsa , ●r-t ,Tnlua)

Thu ●ncok the global opue of ●ventm nota is ● note amid number, in
local promr context. ●wont u ● code determining the type of event,
and value u an ~iated value.

tuple(relatioa= =”tally”.
tUl~, tha, procoamor,aua, rUuo)

This relmion encodes the global apace of talliee derived from s note true,
tall~ is ● tally serial number, am. u the name of the tally whose value
N given by WUUO.

tuplo(rclat ioa==”ampshot”,
snspmhot,ti.mo,proconmor ,aw, rmlus)

This relmion ●ncocku the global spaceof real lime snspshou of ●xecution
~tatit “es, nntpahot u ● ●apshot eerial number. nam is the nmrneof the
tally whose value is given by saluo.

tupla(rolation= =”progras coumtm”,
proc9aaor,procoas, off sot )

This relation ●ncod= the globsl ~paceof program count~r locations, whine
of fmt is the current value of the progrun counter for the given proceuor
and proc~,

tuplo(rdmtion== ”mriablo”,
procoacor, procasa ,s~gwnt ,offmt ,nnm, typa)

This rclatlon en :od= the glo~al spac~ ~f variable definitions, ●nroding



5.S Inputs and outpute ofdebugger components

Our goal now u to cbsrec@rixe uuge of that relstione in ●n integrated debug-
ging environment. Given thht we have s globally consistent field name op~e,
predicsta about tlelde ue used m tbe communication medium between debug-
ging componen~. Eech component uea the global datsb= u it em fit, ecoped
by field limitttionn input from other componeate. The rault us generalization
of windowbed debugging which Wowe dynamic moping of views u a rault
of connecting or disconnecting componen~.

The erecution control window u ● controlpanel. Its inpute ue predicsta on
progmm counter vdte, which ue interpreted - bretipointss, snd predicsta on
pro~r md proca, which ue interpret u the ecopeof the panel’- centml.
E.g., if only node 1 ond 2 ue mllowed, then control operations initinted ● the
panel only apply to thm nods.

The ted widow dieplaye progrun source. he inputs ue predicatm for
proc-rm mad procaaes to trock. It uea the current dues of the progrun
counter (xolat ion== “progmm couat ●r’*) u well u murce code corrapon-
dence (ralmtiom==”mourco”) to dieplay progrun counter locations utd accept
user input for breekpointe, which ue predicsta involving the progrun counter
(the off not field of the program counter relation), Thae pwdicstes may be
input to the execution control window.

The note window shows the ●vent true. Ite inputs Me predic~ta for prct
cmre ●nd ●vent typm to tmck. It uea the note troce (relation= =’’note”) to
displsy s humu-reodable or graphical trac~ depiction. he outpute u~ predi-
csta on proceuom ud ●vent types. Procmaorpredicma con ecope *ny other
window, while predic~ on ●vent type ue used oolely to ecope s child note
● indow to zoom in on &tail.

The tally window allows the ucer to sel~ct tsllies for dicplay, It Im no
predicm? input, and ite output consists of predicates on the n-a M{ of the
tall~ relation. This output is oubeequcntly u-d by ● display window to render
the data,

Ihe probe Window allows the unm to npecify rrwmory to ●xamine. It hm no
pr~tiicst~ Input, snd its output cotmata of pwdicsta an th~ nue fhld of th~
ruiablo relstion.

The dlspla~ Window ellr)ws th~ u-r to dimplaydata. Its inputi ue prediratea
dmw-ribing sutuete of tallim, real-tire? ~tatisticc, or notes, It u- th~ inputs to
rrnder th~ data Acted. Ite outputs Me dwivd pr~dicatu, modifiml by u-r
input ●nd nd~tion.

Thin i- just a nampling of the romprrnmtn which could Iw utiliml, intmtdwl
to give th~ flavor of th~ d-ign without dmrmding too dwply into d~tmilrr

$F,,- lh~ ti-~ WUA@IMfi in ihla rm~l, fordmvudtY,

In



s.4 Existential and universal fields

Thie model ie made ueer-fnendly by defining defmdts for unspecifiedscopa, We
we greatly xided by the natural paradigm of w for s debugger: defudte ttie
one of two forrrm Either the defmrlt u to wIect all of ● field, or none of it: fields
we thus unitwnal or ●xidentid. Chmr~terizings field i- ●esy: it u existential if
the normsl opemtion u w ignore the field, md univerd if the normal opermion
u to include d vdu-. Tttin~ to be dieplsymi are univemal, i.e., the default
u to zbow everything. Scope of proer controlis univerd, i.e., the default
u to control everything, BreApoin~ ue exietentis.1, i.e., the default u to run
without interruption. Other dsta iz similuly Aruterized.

S.s Paradigm of use

The fundamental sdvant~e of thiz organization is that zcoping operations can
be spplied and removed eesily. Suppe one wiaheeto uid ● few hretipoin~
ternporuily. One crmtu a new text window, =te the bredpointz there, snd
connecm the window to execution control, where it wrtz the breakpoints,
Removing the brehkpoinw requira disconnecting the windows, md remrting
them just requir= connecting them sgain, The text window containing the
breakpoint hze m life upuate from the ~tionn it specifla; disconnecting It
retsiru the definition of the utions without their execution,

A zecond Amntage of the organixstion ic the euc with which one can move
b~twmn levels. Selecting ●venm in ● note display cut dfect which procasrm
●e displayed in h visualization window, simply by coupling note eelection and
vimtslizstion through predicak. One vimmliz~tion c~n be created relstive to
~veral diflerent kindn of input: one can -Iect the puameter from the real Limp

statistiu, eelect the procemrm from the notee, Md the proc~ from s num-

mary display of proc= behavior, This compl~tc intwdcpendency is necmsary
in order to fully integrate all form of informmion w~ have •vsilabl~.

6 Results and conclusions

Thwe is cl~arly great vslue in integrating the vaztly dimimilar dma availabl~ tt)
● dd,,lggw ink ● coherent whole, but th~rc we still many probleme to moi,P,

~snd(wming ●ll dtta into ● oh-red ‘normal form’ (nmh u tallim) is s pnrtinlly
sucr~ful approach, an mw may still n-d to w dntm in i~ raw form dII~

to ommmnn ●nd deleticma during the tr~nnfortnation, TrI lhe extmrt thm the

‘normal form’ of tallim mrccwda, dam flow anmlyninhax prrwn to he a good

sppromrh to undmzlmnding th~m The I}- mtrmqy of augmentmg infornmtllm
inntd of trannfnrming it pr-rvm rdationahipz h~tw-n th~ thpirtd ima~-
and the raw dmta whlrh gmrmatml It,whirh in lurn In relatml to lh~ natur~ of

die hug hmng mmlyzed. Th~ data flrrw grmphd~pwtm global contexl for dw uwr,



fig u ● navigating point and allowing reuze of complex filtration achem-
for vinuahzing distinct but similar dat=u.

The alternative ●pproach u to leave all data in -ntially raw form, ud
erpw all display- u queriee into ● globally acc~ible databaae. This hM
bmefi~ aad probleme. The msjor benefit u that the many facets of execution
data may be viewed in ~ntidly raw form, with ●ach interaction from the ~~i

caueing display ccope modification for data in other forma: selecting an vvent
caa modify display of ● statiatic. Thiz tight interdependency between displays u
● nice expraeion of the similar tight dependency between typ~ of perfor’nance
dab,

But even thio ●pproach haz problems. Query propagation ia ● lot harder for
-m to undemtand than data flow, being a foreign concept to mat mpercom-
puter developer, wbo come from a numerical analysis background. I expect a

modicum of umerresistance for this reamn. It iz becaum of this expected reaia-
tastccthat 1 have intentionally embedded data flow cemantica within the new
aemantia u ● subset. 1 ●ven expect resistance to the multiple windows within
which one viewn different data typee.

While parallelizing compilers may someday provide acceptableperformance
for m~ively parallel muhinee, it is my view that there will always be ● need
for the prognrruner to understand the workingz of the ●rchitecture to achieve
optirnd perfomrmnce, Ou: tool- and aoproach are aimed ●t tbio god, and thus
tugcted at the small ●udience which really winh~ to push theee ●rchitecture

to the limits of their capabilitia. For this noble purpoee, complete, interrelated
executiofi data in weentid, The relational model is designed for this purpow

shove dl otbem.

References

[1] Choi, J., 13.P.Miller, ●nd R.li.B. Netzer, “T~chniqum for Ahugging parallrl

programa with flowhack antlysis”, ACM Tmns. Prog, Lang,, Vol. 13, NO
4, Oct. 1901

[2] Couch, A., Gmphlcol Rrpwwnfaftow o/ Progmm Ptr/omnancr on llyprr-
crnk Memape.pasmmgMrnlflprocessors.Tech, Report RR-4,Tuft- Llniv. kpt,
of Cbmputer Science, April lWH.

[O! Crouch, A., ●nd 1).W’ Krumnw, “Monitoring pnrnlld ex~rutionn in rd

tirrw - Prmr. Ftlfh fhfnhuftd M~mory (Ttnnpuhng (“on~~rtnrt, IEEE (’on)
putm Socirty 1%-, Iflti[).

x)



[5] Geist, G.A., M.T. Henth, B.W. Peyton, and P.H. Worley. P]CL: a portable
insimmented communicuiion libmry, C mfemnce manual, Tech. Ileport
ORNL-11130, Oak Ridge Nat. Lab., Oak Ridge, TN [1990).

[6] Hesth, M.T, and J.A. Etberidge, Vianalizirq Performance of Parallel Pro-
gmms, ORNL Technical Report TM-11813, Oak Ridge Nat. Lab., Oak
Ridge, TN (1991).

[7] D. W. Krumme, ~he SIMPLEX Opemting System.” PMC. TAid Confer-
ence on Hypemube Multipm.ceaaotw,ACM Pm, 1988.

[8] Lapoh, M. V., ~oward ● theory of nbetractione and viaumlizatione for
debugging mauively parallel programa”, to appear in Proc. of tAe Two
Day Afiraiconferwnceon Parallel Pmgmmming Tools, Hawaii International
Conference on System Scienc-, 1992,

[9] LeBlanc, T.J, and J.M. Mellor-Crummey, Debugging Pamllel Prugroms
witA htant Replay, Butterfly Project Report 12, Computm Science De-

partment, University of Rochester, 1986.

[10] Reed, D. A., R.D. Olson, R.A. Aydt, T.M, Madhynatha, T. Birkett, D.W.
Jensen, B.A.A. N=ief, and B.K. Totty, “Scalable Performance En~iron-
mente for Parallel Syaterna”, Pmt. SirtA FiffA D:attibutcd Memoq Com-
putmg ConJcrmce, IEEE Computrr Sociwy Prean, 1991.

[11] Snodgr-, R, “A relational approach to monitoring complex systems.”
ACM tint. Computer Syaiems, May 1988.

[12] “Performance ToolII from the !$ystem ki~n )’erspmtive,” A white papm
from the system dcaign group, 1991 Workshop 011 Parallel Computer SyR-
tema: Softwnr~ Tools, hill AppFlbP (ml ), In prqmration.

11



Animation and History: Analyzing Programs Over Time

Kent L. Beck
Jonathan B. Rosenberg

MasPar Computer Corporation
749 North Mary

Sunnyvale, California USA 94086
408/736-3300 kentb@maspar.com

serial programming environments have not providedexplicitsupportfor
tracking changes in program state overtime. The MasPar Programming
Environment has recenttybeen enhanced with program animation and his-

tory remrding which provide more powerlul supportfor understandingthe
behavior of complex, data parallel programs.

1. Introduction

Programming environments have traditionally Includeda rich set of tools for mapping
programming language abstractionsonto machine abstractions(e.g. compilers). The
reverse mapping has not generally been as well supported. The ideal programmingen-
vironmentcreates the illuslonthat the underlyingmachine directlyexeoutes the state-
ments of the programming language. Figure 1 showsthe MasPar Programming

Environment (MPPE}lI, a tool for helping programmersunderstandthe behavior of com-
plex programs, MPPE maps the abstractionsof a massivelyparallel, SIMD architec-

ture, the MasPar MP-1 121,back into data parallel programminglanguages, currently rep
resenled by data parallel variants of C and Fortran13”41.MPPE delivers graphical,

source-level control of the execution of a prograrll, tabular and visualizer-based inspec-
tion of variables, and incremental, graphical statementand subroutineprofilingls!

One of our goals in writing MPPE has been to eliminate the need for recompllat!onas a
debugging strutegy. Unixm-based programmingenvironmentsrequire recompilationto
operate symbolicdebuggers, to Invoke optimization(which Is mutuallyexcluslve with

debugging), and to profile. All of these operationsare enabled simultaneouslyby tha
default switches of the MasPar compilers,

Fnabling debugging and profilinfl are not tho only debugging opmatlons invoked by ro-

compilation, howovor. One common debugging strntogy Is to insert diagnostic print

slnt(?mcmts. As tho progmmmor’s undurskmd,r}g of tho location of n bug chnngos, tlw

~nnt statwwlds nood to bo ctmngod and movnd nrcwnd, mm(?~~itatirlq ttm rocompil:l

IIW1 of at IO:IM orw mmrco f’~.)nnd III(I rolinhil]q of Itw 01111111ux(wLJtnblo, III Intorviow:;



with users we discovered that one of the features of debug print statements they liked

was the ability to review a variable’s values overtime, and to juxtapose two changing
variables to understand their interaction. In data parallel programs,with their large data
sets and parallel control structures,support for this styleof debugging is particularitykn-
portant.

We have added a histo~ recordhg mechanism which, in conjunctionwith program ani-
mation, eliminates the need to recompile programsto track and compare variables over
time. In addition, we have found the historymechanismamenable to a varbty of exten-
sions to aid in the understanding of data parallel programbehavior.

2. Execution Control

Mapping the machine’s view of a program execution (expressed in terms of machine in-

structions)into the programmers view (expressed as programminglanguage source
statements) is the job of the execution controlcommands. Executioncontrol illuminates
control-orientedbugs by showing which statementsare executed, for instance In a con-
ditionalconstruct. As all displayed data values are updated whenever the program
stops,execution control also provides entry ~ints for inspectingdata.

MPFE provides the three essential execution controlcommands:“continue”,which runs
the program until termination or until a breakpoint Is reached, ‘step”, which executes the
program until the beglnnlng of the next source statement, and “skip”,which executes

untilthe beginning of the next source stdement In the current routine. Breakpointsare
created and destroyed either by clicking in a dedicated screen region next to a source
statement, or by selecting a routine name and Issuinga menu command. Breakpoints,
once created, can be given various attributessuch as an ignore count, which associates
a down counter with the breakpoint which is decrementod every time the breakpoint Is
reached. When the counter reaches zero tt is reset to its originalvalue and the program
is stopped, Finally, execution can bo quicklycontrolledby selectinga line or routine

name end issuingtho “goto line- or ‘go to routine”commands.

One of the “accelerators”in the MPPE user interface is the user of the carriage return
key to repeat the last menu command. When used withthe execution controlcom-
mands this feature allows the user to quickly step througha program, although It intro-

duces the possibilityof tho “singlestep twitch”,a distressingquivering of the pinky finger
on the right hand

3. Animation



without any user intervention. At first we added an “animate”menu item for this feature,
but a user quickly asked for a a version of animate that worked with “skip- instead of

‘step-. Rather than add yet another menu item we took a step back to see if we could

devise a more general solution.

As shown in figure 2, we decided to add a check box, Iabelled “Animate=,underneath
the machine icon. If the user checks the box, any subsequentexecutioncontrol com-
mand is repeated until either the box is no longer checked or the program stops for

some reason other than the command. For instance,by checking“Animate=and then
issuingthe “step- command the programwill cmtinue to single step until the program
terminates or encounters a breakpoint. The same is true of “skip=,“goto line=,and “go
to routine=. Wontinue” is slightlydifferent,as encounteringbreakpointsdoes not stop
the animation.

While the .Animate” button adds no functionalityto the environmentthat could not be
duplicated with a sturdy ngM plnky, we have noticedin ourselvesand our users a quali-
tative difference between just watching a program execute and having to intemene at
every step. The user need no longer pay a!tention to when the program has stopped in
oder to issue the next command, and is instead free to concentrateon the program.
This ‘pmgrarn as movie” style of debugging has provedparticularlyuseful for uncover-

ing cmntrolbugs, especially those introducedby data parallelcontrolconstructswhere
the then and else parts of a conditionalcan both execute on disjointsets of processors.

4. History

Shortly after adding program ani~mationwe began to experimentwith recording historical
information. Our two inspirationswere the desire to Improveon debugging print state-

ments by flexlbly displaying and juxtaposingvariablesand the need to provide a tool for

analyzing the processor utilizationprofileof programs. These seeminglydisparate ap-
plications are both time varying, and our solutiontakes advantage of that fact to prasent

and single, simple view of all historicaldata.

Our design uses a logic analyzer or oscilloscopemetaphor,two instrumentswhich SOIVO
the .juxtaposltion of values over time’ problem. The historywindow (see figure 3) con”
tains a number of Waces”, which are arranged along the top of the window, while time
occupies the vartical axis. The quanta of time, one instanceof the program stopping, is
marked along the loft edge by a tick mnrk, Pressingrinddrnggingone of those ticks

chtmgas the magnification of time, A vwtical scrol!bar prc.wldesmotionthrough tlmu.



the variable stillprinted identically. If time t,as ueen compressedenough so that the
printable representation no longer fits i~ ths box, the printing is omitted, with the closely

spaced gray lines indicating rapid change (figure4b). Figure 4Cis a graphical trace,
. where the user can set the bounds of the graph by draggingthe limitaxes horizontally.

A final variable trace we have experimented with is the boolean trace, where the user

can type a simple expression on the variable and the trace turns gray where the expres-
sion is true (figure 4d).

Program variables are not the only vah.wsto vary overtime. We have also added a pro-
cessot utilizationtrace which displays a histogramof the number of processorsactive,
and a clock trace which shows the cunent usage of CPU time down to ten millisecond

increments (figure 5), The latter makes apparent anomolies in the amount of time nec-
essdry to execute iterations of a hop. Other tr?cesdisplaythe available heap and stack
space, which are useful in finding memory leaks and otherwiseanalyzing the memory
allocationbehavior of a program.

The historyview has a powerful synergisticeffect with program animation. While ani-

mating it is not always possibie to keep track of sweral variable values at once if they
are in separate windows, but the historyview n?akestheirconnectionobvious. Also, a
slip in concentration may cause a user to miss an importantevent in an execution, while
the histofyview nersefves the information. Animationselves the historyview by making
it easy for tho user to collect iong traces withOUt user intervention.

5. Scenario

We will demonstrate animation and historywith two examplvs: one showing how history

can help the user discover data”orientodbugs and the second showing how it helps in
tuningdata parallel programs.

5.1 Wrong comparison operator

A common novice mistake in C is using the wrong comparison operator in a looping

construct. The following program writes off the end of an array, mistakenly modifying
the value of the outer loop variable while calculatingthe inner loop.

int j;
float /l[’)];
lrlti;



Figure 6 is a trace of i, j, and a[5] gathered by animating “step”. The trace clearly shows

that j does not advance beyond zero until its value is modified by the last iteration of the

inner hop.

5.2 Processor utilization

Figure 7a is a trace of a benchmark program recentlycoded for a potential customer. It

showsthat all processors are not being used all the time. With the informatioriin this
trace the programmer was able to modifythe programto producethe trace in figure 7b,
which acheived an aggregate 25’?4speedup over the earlier version.

6. Conclusion

We were pleased with the simplicityand flexibilityof our programanimation facility. At a
cost of one additional button in the user intefface the user is able to watch “interesting”
pointsof a program by a straightforward extension of familiar execution control com-

mands. Program animation increases the illusionthat the hardware is realiy 2 Fortran
machine or C machine, and increases the user’sunder%andingof the behavior of a pro-

gram in those languages.

By adding history recording we were able to eliminateone of the remaining excuses for

puttingrecompilationin the debugging cycle. In addition,onfine historyhas many ad-
vantages over the teletype version: more time can be viewed with the continuouspan
and zmm features, the data can be viewed in more formats,and importantderived data
such as the percentage of active processm can stiileasiiy be juxtaposed with variable
values. History and animation aiso have a synergisticeffect, each supportingand mak-
ing the other more usefui, without introducingnew complexities.

In the future we want to expiore the use of ianguage expressions entered at run time as

the source of data for traces. We would aiso like to find ways of effectively making trac-

es of aggregate data, such as large arrays. Finaiiy, a simple extension of historymakes
it possiblefor the user to seiect a tick mark and see the correspondingsource line.

Animation and history are a powerful combination in promoting the understanding of

complex programs. We have shown how both facilities can be added at minimal cost to

the user’s Inodei of the progr~mming environment, and how the two facilities can work

together to &rovide vaiue beyond the sum of their individual contributions,



References

[1] 7i7e MasPar Prugmmn”ng Environment Reference Manual, MasPar Computer
Corfmration, 1990.

[2] Tom Blank, The MasPar MP-1 Architecture-, Proceedings of /EEE Com~n Spring
1990, IEEE, February 1990.

[3] 7he MasPar Par’a//e/ Application Language Reference Manual, MasPar Computer
Corporation, 1990.

[4] 7he MasPar Fortmn fdinguage Reference Manual, MasPar Computer Corporation.
1990.

[5] “IntegratingProfilinginto Debugging: Kent Beck, Zaide Liu, Jon Becher, submitted
to the International Conference on Parallel Processing.



5J Execution of prof-example

B Stack frames O Source files O Global variable

4AIN (prof axamle.f: 321

x m0.0
Zml.o

\
ntegaf I

c EPREG W

Pr&ll “, ‘Malsl loop”

X [m IAAlNO]
. -7

do 1-1,2000
y=Z ● ce”csh

‘ ~
al X(l :128.1 :64.1:4) ~ —

yay+~csh
EMEM ~DE4

y = y + cn”cshl l@SH

y ● y ● Ct’c$hl (1,1,1)

a

-5.79347
y = y ● cu”cshl (2.1,1) -s.79347

YmY ● cdmc$h (3.1,1) 579347
x - y=cc (4,1,1) -s.79347

●nd do (S,1,1) IF-s,79347
-s 79347

I’zx5r7
-..-—.

==

----- .
-s 79-7

,-. . , -----

Q,l,l) -s.79347 —
(10,1,1) -5.79347

Flgura 1: TM MasPsu ProgrammingEnvironnwntDebugger
9

.

PIlaFE

Animate

Ftgure Z Animate button

f I I
1 8

0 1
2
3

i- ‘ : \ ~

I I

7

4b..—

I~~-;-. ,
I7—1[......-—L...........~--~I

Figure 3 History Window



8 b c d

fqme 4: Vwhbis Tr8cu
s) tmud
b) qWUy ch~~ t-tl~
c) gmptdcd
~ compmson

I

a10

1486439793

Activ. PE % CPU The
o 100

0:0:10.14
9

0:1:9.3
9

0:1:11.13
-

01:15.42
9

01 S6.74
9

figure S: PE Ldi!iZdbllandCPU the trues

.
Ftgure 6: Truing out d tiutis WRY referenca

Actlvo PE % CPU Tim@ Active PE % CPU Tim@
100

10:0:5.0 n
Ilu:o:l1.41 II

I:.,.. . -..-.I

0:0:148
.--— —-. .,-- .......

O:O:Z,97 I--—----—..—... ..... ......
0:0,4.49
-—-. . ... ... . . . .... ,,-.. . .

1

0:0474
i

o:o:5.ze—
— ‘“”--”-” “-””””1.—. ---.,—.. .. .,. ...... .... .
0“0”647 I—- . ..———-,.,,,,.-. .,--
00867 !

1’-- ““ I



A Distribut~ d Debugger Architecture

AM Mei Cbng
Philip L Karlton

Davti M. Ciemiewux

Silicon Grqdtics Coqnau S-

201 IN. Skwcliw Rlvd.

MamminView.CA N039

ABsi 4C7

L Introd*

Tmdikmally, mom debuggers have kn designed using a tiidk ~.i~. wbc all of h

ckbuggcr funcsicmalilyis cauaincd wirhin ● single binary * a single pmcsa. While this mokl W auf6cknt

fw simpk tasks.mom compk &bugging * involving multiple ~csscs A rcmo@ ea~ution ~ ms well

sunpcwtcd. Funkrnm’c. very link ksibility is avaikhlc for providing difkcm e imukcs d fcw w

extcnsroas

TIc Co&\”~icmm Dc@gcrl archikcmrc ISbawd u~ a clicnl-~nfcr -1. A catual Process Control

Stwcr prcwdcs h~h level cornrol A KCCSSfcmurcs for debugging. while muhipk clicm views commrmicmc

v IdI the ~rvcr ad presentdau to die uwr. T’lm archi~turc enables k &bggcr UI~ sh fcalurcs as

mulupk usm intcrkc ~scntaiicms. muluprocm dcbuggmg. rcmolc dch~ng. cmfcnmcc debugging, ml

uWr-LWs&unl&Mc Views



Nmwrn&r 13.!91

_flM dismibuud architcctruc of h Co&l’ision Debugger psovidcsscvual unquc fcawrcs. As mcmioncd

bcfcwc.a high dcgrcc of fkxibility is ●vailable in Ihc user imcrf=e, albwing diffcmu inlcrkcs 10bc built on

mp of h underlying Process Cowrd Smw as WCII as inmfaccs ccmsislingof muhiplc ~cascs. Fmhcr-

nmrc. Utis model directly sqporu the ability fm cnd users m conurw LIEU own ~ imcrkc componms,

Iaibfcd for Ihcir parkular debugging scenarios. TM client-serveram also ~~s Ihc capabilityfcw
rcmou &bugging (wtwrc views run m a diffcmn rnachinc h *lVcr and LWgctfmxcas) d conf~

tkhu~ing (whcm lwo diffcfutl usersmay exarninc Ihc sarncIarb mrllanaauly M diffml wuMMMn“ s).

3. Multiprmess Dcbuggh#

Tk disuibu~d namrc of IJICCo&l’isionDe@ger is c~ially usefulfw sqqming multiproccssdclmg-

ging. Traditionally, ckbuggcrsoriginally designed fm single ~ss qplimiims have ben exwti to SUP

muhipk pcxcsscs. In ~h cases. k handling of muhipk -ws is ofwn clumsy, rquinng k user to

swi~h a singk view of W larga btwccn lhc V-S pmxcsscs.

By su~ing muhqdc views bad on ‘hc clicm+crvcr ~~h. k CudrVisitM Debugger allows IIW

user 10 ckuw bclwccn swilching exisiing views m diflcrcm ~sscs or, ●llcmativcly, hinging up S-

VICWSfor Ihc pmcc~s of irucrcst. Addiknally, a spcializcd VICW,lhc MWpcess l’icw, displays W currcm

sums of c~h pracss m k grq hcing debugged.u@aling M data dyndcally m ~ clmnges~cur,

& Gmcludnns

By ~paralmg W immal ddwggcr functicmaluy fmrn Ihc u=r inlcrf=c compcmcnu,a grcal -I d flcxL

MiIy is gairwd fw u~r imcrfacc ckwgn. muluprtxcsx mrppm, and usermrmunimion. Disuibutcd, climu+crvcr

mmkls kw cmnpuling twvc kxnnc mom comrmm as fiismr workwations arc buih, Wc bchcvc thm this @chnol-

ogy can also Iw uillwrd cffccuvc!y in dclwgg~mramhummm-s,























Design of a Debugger for a Heterogeneous
Distributed System

A.rjun Khanna

-~ti Systems~b
MCC, Ausfin, T-

1.0 Introduction

n’dapp~thedatgiof mwc,adf!bugp
geT for ● dwibutcd, Obpddented, heterqp
neoua oprdng @em Hng d@gmd aapt of
tlwExperiITuItalSyattmUPrc@ (ESP)●t MCC
Someoftlwprcwmao fdebuggillgi ntlwmm-
vlmmmnt are dimwd. ~immnb fa sym-
bok debugging in a di-kd envimnnunt are
&velo@a ndaframworkfor ~%1
heterogeneityin ● ~anapamntnunmr b p!eaen!-
d.Themarch~ in thh ppr bullde on
emlierworkdOrwbyHahnontherequlremntafor
● debugger for =IClt[l].

AMteview ofti ESPenvimnment foUowain
Sxdon ZSection3developathenmtivationforthis
worLIn SecWn4we~pacifythebasicfmnwwork
of k debugger.Conhibutionscdthi- ~h ●e
Iisti InXIon 5.PinallySection6 concludesthe
PF h m-w - --~g ~ Owiw *
search

2.0 TheESP Envlronrnent

Tk ESP envitmunent h ● distdbutd twtmgc-
ms systemttut enapaulatmanob@t4Jdcmcd
paradigmtiwad applkationpqramming. Cur-
mtly it SW- tb c++ progmmming language.
-al ESP •~katiana kve k tll~dd]y
&llUxbabated on ● network COrt9htiltg of sun3,
SPrc, Motorola E!iKXtObased SKit ●pplitition ac-
celcrati, ●nd mmt -tly the Motorola IXlta
hardwmc.

llw ESen vimnment mm8i0ttof Qminhnal kcnwl,
● mpy nf whkh rmidca a each node of the dhmb
Uted Spm ●d Opcmting Syamlnfadlltim enmp
dated ●s ● ccl of Publlc %rvicc -s that am
linked to the kcmcl on ● dcnund IMSIS.The kcrml

3.0 Motlvatlon for t~18 Work

‘hvo aigniflcmt conmna pvide the nmtlvation
br thh work ‘llteyam 11’Ihened for● diatrlbut-
d ob@t+rlentd debugger●nd 2)Dea@lng ● de-
bugger thatwlu opelwinshetmgenm’w
envirmnwnt. A W dkumion of thae two m

-a followw
●

●

Dlablbuted ObjecbOdented Ubuggm It la
poaalble to UW ● sequential debu~= like gdb
(dh withe%ten~natoBU~fi C++) to debug
the ESPkcmel under UNIX. Butgdblsnotob
~-cr.tcd h, the aanw paradigm M ESP.Por
ample, ingdb breakpointmaybew onlyon
aclaaabads.Thehtabilltytoaet*pints on
a pcrhwtanmbadsis a severeIhnltadonIn an
envhmnwntwhinepotentiallya largenumoer
of inatanm shw clmacode●nd breakpohtu
need to be act only in msubact of tlw hutanc-
m[l]. Moreover, gdb &m not off= featurea
mch m replay. dhbibutcd brwkpohtts, m
aagclogging etc., that me csmnttd fordl~tribut-
eddcbuggq$

liaterogeneltyConmma.‘k rquimn!nt of
ammmodating wed heicrogcncmm plat-
fonna in =P has made us look ●fteahat mvcral
baaicham Nmcly:

- Dcflnlng the mlnhnal functionality mquircd of
a dklbutcd debugger.



-Evaluating tlwpmaand ccmaofana_
inwhichmlious comqmwmb of the -er
are d)mamically umfigurcd vts+vis Mng s@t-
ially linked Inb ● @e lmlmlithic pmgram-

-Spedfying tlwhtiamktwemwvdm

r dthedebgger. Am@rWantde
~imidentifying tilevelatwhkhex-

CepdonhDndling#xl tBble fonnah ad
amhibctulll dependmcilesdwuld b mpau-
latd inorderM tocompmmlw theexlm8Wu-
tyandparlabdityof thedeblgger.
-Identifying the hmcdodlty in ● dlatrlbti

debu~ that S1’@llM be Cantralizad vb4-v19
being diatiiti.

4.0 Psrtltionlng the Debugger

W pop cplhtinghe debugger tnto tlw foUow-
irig comporwnta - on thefunctionalitythat&
cridcmlfor● dlstited debugger tmgebd to a het-
~eMxle envimnsmnt.

●

●

●

Fmntestd. Tbfmmtand O&rsau=frled~
arcldbcture i-ent * of the dMribut-
ad qMl?rn.

!!@bol managec7he symbol managerhandleo
fundonalky Whkh todlftlcult@ dhrnbute.71’w
maintaskof b qmbo! mnager h tomanage
typeandsymboltable information. Mditional-
Iy tk symbol manager backs * nodes on
whkh ●n application is distrlbubd.

Debugger Publlc Semk ObJact (DPSO). W
Dl%OI~anobjectthatprotitheinterfacek
t- thecymbalmaNger and the back end.
One of the main taslu assigned to theD150 is
to translate Commandahum the m)n’nbcdmnnag-
er todmplebackendrouttrntoacmwapplim-
Uon memry. Instmction~hg and
fMchlnedqendentsti franwnunlpulation
meeiwapdabcdinthhla~.
Aninstanceofa D150wouldbe ~ly on
eochnaie of adislributi qm@rnthmtneedsto
k dtigged (thh Is obviousdrw theD=
Provides the ~tary interface hJaccessnwm-
ov an ● ghmn node). ThustiwDI%Oformstlw
dlmlbutd mm-t of h debu~er.G]Obd

hah~ dl~tributmlbreakpointsetc.,●m acne
oftheconccnuthalmayh appropriatelyhan-
dld by this layer.

● Tltebackend.l’h emabrcmcmm●t thi9 level
-. l)Bmakpoint mar@nwnL Iltis indud-
setdng and wvapphg bmakpoinb u well u
maintaining breakpoint tablm 2) Interfacing
withthe DI%Otortad/titQ nwnmry ●nd$at
brdqxdnb. Pnx’eswrhe] fundiodty, much
a, readinghrlting to Conbol q#Mers h ham
W by the eXcepWn handling facility pmvid-
edbythemhl.

It ahdd be - tit * mschiw depemlent
portkma of the-ale rtsbkkdm W
DPSOand theexc@on handltngfacUltla
●vaUaMeaapart of the E!5Pkmwl.

5.0 Contrlbutlons of this
Research

Whilemmworkaisb ontherequhmmtsfora
qmbolic debuggerfor C++, DESK propoam du-
ticm for several cormmm typical of ● _
nam% distributed C++ envimmment. ‘llwse
IIU3U*

‘Ikdm@c9 b handlepr instancebreakpoints
as well ●s the ●btlhy to m breakpoints in tIM
COEstruckwfor ●n instance(a corwtnwtor tafunc-
tion -11 to create a new instance of ● clam). In-
serting Lwmkpolnb In Con,mctora b
amplkabd shwe the =P kernel uses run tinw
heurlotics to allomte @ on the nodea of a
distrlbutad qstem. ?lw, tlwm 10 m ●prioti
knowledge of the fact where ●n hWance will be
con8rnlcted.

Perhaps the -t signifiunt contribution of this
mrch is eqwcted to be the qmrificatlon of
the Mcrfacmbetwmnthevadouec0mponent9
of the debugger in ● machine independent man-
ner. Por example,the Intmface~ the
D150 ●ndthesymbolmanag=h independent
of th mwtdnew for whichtlw D= hm
beencompiled.Wnllarly theoymbl manager
b targetedto workwithaever~lot@ file for-
mab (for e.g.a.out, COFF, ELF,etc.). ‘flw phllo~
ophyt-d~ratlon ofmechanimm(I.e.,objmtfile
fonrutandtechnique of loading) frum policy Ot
should be pmdbletoadd-ymboltablmdynam-
Imlly)hm● dl~tlnct●dvantageoveranvonollth.
k debugger that murntlx rewritten each tlmc
the obJcctfile format Is changed.

2



6.0 Conchdms

● Deligninganentenwedehggerwithamird-
nul con. Addmmal furutimality should be
cdigurdmt twmmatruntirlle.

● Definingdean intim Mwem W vamus
Iayersaftlrdebugger masmminimizearchi-
tectural d &j@ file fommt deperulmwies in
m debqp

● horptxating I’devantham involved In he
design ci ● dctiugger for ● diatxibu@d C++ m
VimnJmnt.

[1: Hahns tkqas., “
Envircmrmtt”, Mls!cal%$%
(ACA-ESP& W), MCC Non<mfidmmal



Supercomputing ’91 Debugging Workshop

Debugging in a Loosely
Coupled Heterogeneous

Computing Environment:
A Case Study

Superconcurrency Research Team

Navel Ocean Systems Center

Code 421, San Diego



Superconcurrmcy

Objectives
QImprove cost/performance ratio
● Reduce programming effort

Ap~roach
●

●

Match codes and algorithms to best
suited architecture
Intelligently manage a selected
superconcurrent suite



Profiling and Benchmarking

Baseline Application

Execute on a

/\

Execute on a
vector heterogeneous

supercomputer suite

2 Times faster
than baseline

10Times faster
than baseline



Heterogeneous Processing Suite

/

Fine-grain
Parallelism

X Windows GUI

\

Visualization
Vectorization m......A..-w....A..&L.-A..

IENCOM

Coarse-aain
Parallelism
Parallel DB



CASES

Capabilities Assessment Expert System I

Sun XWindows /’MacIvory

/7\R

Campaign Simulation Models



Heterogeneous Coding Process

Match sequentialmodel to
bestsuitedarchitecture

Code modelk
I

Debug model

r’ I

I

Accept b



Current Debuggers (SRT)

Name Architecture

DBX

CMDBX

CI)B

PASM

DBG

DEBUG

Scalar

SIMD

MIMD

SIMD

Vector

Scalar

Machine

SPARC

CM2

MuItimax

DAP

Titan

VAX



●

●

●

●

Present Debugging

Most development time spent
debugging

Software debugging tools follow
hardware development

Lack of support for simultaneous
debugging of multiple processes

Inability to specify array areas



Heterogeneous Debugging Issues

● ofilcial Standard
Dbx/gdb W ???

● Architecture Transparency
Scalar vs vector vs SIMD vs MIMD

● Centralized Control
Central controlof multiplethreads over
heterogeneousnetwork

● Automated Verification
VMS vs UNIX, scalar vs

● Graphical Representation

parallel

Large data setsand processexecution,ie
CM2



Future of Heterogeneous Debugging
Parasigl@

● Real-timenonintrusiveparallel debugghg and profiling
● User controlledprogram instrumentation
. User configurable parasite processes

● Call tree analysis -‘ ‘paragraph”
QThread tracking scoreboard
● C and Fortran interpreters

● Dynamic code recompilationand insertion
● X Window/Motif interface
● Program interfacefor customparasite creation

Parallel Virtual Machine (PVM) /HeterogeneousNetwork
Computing Environment (HENCE)

● Heterogeneityand portabili~
● Tools for running, debugging, and analyzing programs

on heterogeneousnetwork



Contacts
Superconcurrency Research Team

NOSC, Code 423

San

Richard F. Freund
(619) 553-4071

Diego, CA 92152-5000
Scientists:
Mark Campbe]]
Francis ~U

RFFREUND@NOSC.MIL Laura Garbacz
Mike Gherrity

Proiect Administrator: Javier Gudino
D. Sunny Conwell KeviIIKumferman
(619) 553-3994 Matthew Kussow
CONWELL@NOSC.MIL Doug Sylliaasen

Lab: (619) 553-S322 FAX: (6 19) 553-5793



OVERVISW OF DEBUGGERS USED BY SRT

Debuggec
Architecture: Scalar
Machine: SPARC
company: Sun
Languages: c,FORIRAN

DBX Is our standard scalar debugger. he capabllttles include setting
conditional breakpoints, single stepping code, viewing and changing the
values of variables, displaying variable type, and providing postmortem
dump analysis. It has window Interfaces for running In X (xdbx) and
Sunview (dbxtool). Some of It’s annoying features include the Inability to
convenientlyspecify areas of arrays, and the requirement of using C Ilke
syntax while debugging FORTRAN code.

Debuggm PASM (Program State Analysis Mode)
Architecture: SIMD
Machine: DAP
company: Active Memory Technology
Languages: FORTRAN PI- Enhanced
Usage: Use * compiler option, and include a “Pause” statement.

PASM, which stands for Program State Analysls Mode, has been useable in
it’s current form for about a year. It has the basic capability to examine
variables (Includlng registers and stacks), single-step through program
code, set breakpoints, andresume execution. It uses its own unique
command syntax. It has an easy to use syntax for displaying portions of
mutlidimenaional arrays, which is an Important feature for a SIMD
debugger. Some of the features the debugger lacks Include the ablllty to
change the value of variables, trace procedure calls, and rerun code from
within the debugger.

1



Debugger
Architecture: MIMD
Machine: MultiMax
Company: Encore Computer Corporation
Languages: C, FORTRAN, EncoreParallelFORTRAN (EPF)
usage: Use -g compiler option

CDB is a standard Unix like debugger with some additional features for
handling muitiple processes. It provides all of the functionality of dbx,
and even includes some identical commands, but in generai has a unique
command syntax. The major enhancements for parallel debugging inciude
the ability to set both global and process specific breakpoints, and to send
cmmanda (inciuding those to continue running, single step, or print
variable vaiues) to either single or muhipie processes.

Debugger
Architecture: SIMD
Machine: Connection Machine
Coimpany: Thinking Machines
languages: CM-FORTRAN
Usage: Use -g compiler option

CMDBX provides all of the functionalityof dbx and also uses dbx syntax. it
has extended commands to aiiow the printing of array areas. These
extensions also apply to dbx expressions for example allowing like sized
areas of two different arrays to be muitiplyed together and displayed. One
nice feature of CMDBX is that it accepts a more FORTRAN like syntax for
exampie array references can be specified with parenthesis FORTRAN ilke
instead of needing to use C brackets.

The CM uses the standard dbx debugger whh some custom extensions for
debugging C* code. The extensions mainly ffeai with defining “r@gions”of
processors to look at, and simplify prlntlng the values of paraliel
vadabies, When programming the CM in ●L!SP the debugging environment
is integrated smoothly into the standard LISP debuqging capabilities.

2


